SHAP库0.45.0版本更新导致PyTorch图像分类示例失效问题分析
2025-05-08 00:22:41作者:董宙帆
问题背景
SHAP(SHapley Additive exPlanations)是一个流行的机器学习可解释性工具库,用于解释模型预测。在最新发布的0.45.0版本中,SHAP库对返回值的类型和形状进行了重要修改,特别是针对多输出模型的SHAP值返回形式从列表(list)变更为NumPy数组(np.ndarray)。
这一变更虽然提高了返回值与模型输出的一致性,但意外地破坏了官方文档中的PyTorch MNIST图像分类示例代码。该示例原本用于展示如何使用DeepExplainer解释PyTorch模型对MNIST手写数字的分类结果。
技术细节分析
在0.45.0版本之前,SHAP库对于多输出模型会返回一个包含多个数组的列表。而在新版本中,SHAP值被整合为一个多维NumPy数组。这种变化导致原有的数据处理代码无法正常工作。
原示例代码中的关键数据处理部分:
shap_numpy = [np.swapaxes(np.swapaxes(s, 1, -1), 1, 2) for s in shap_values]
test_numpy = np.swapaxes(np.swapaxes(test_images.numpy(), 1, -1), 1, 2)
这段代码假设shap_values是一个列表,并对列表中的每个元素进行轴交换操作。但在新版本中,shap_values已经是一个NumPy数组,直接使用列表推导式会导致维度不匹配的错误。
解决方案
经过分析,正确的数据处理方式应该改为:
shap_numpy = list(np.transpose(shap_values, (4, 0, 2, 3, 1)))
test_numpy = np.swapaxes(np.swapaxes(test_images.numpy(), 1, -1), 1, 2)
这个修改方案通过以下步骤解决了问题:
- 使用
np.transpose对SHAP值数组进行维度重排 - 将结果转换为列表以保持与后续
image_plot函数的兼容性 - 保持对测试图像的处理方式不变
对用户的影响和建议
这一变更主要影响以下场景的用户:
- 使用PyTorch DeepExplainer进行图像分类解释的用户
- 依赖官方文档示例代码的用户
- 在多输出模型中使用SHAP解释的用户
建议用户:
- 检查现有代码是否依赖SHAP值的列表形式返回
- 更新数据处理逻辑以适应新的数组形式
- 关注官方文档的更新版本
总结
SHAP库0.45.0版本的这一变更虽然带来了更一致的API设计,但也导致了向后兼容性问题。用户在升级版本时需要特别注意数据处理逻辑的适配。该问题的解决方案已被官方采纳并合并,预计将在后续文档更新中体现。
对于深度学习可解释性领域的研究者和实践者来说,理解这类底层变更对于保持研究复现性和工程稳定性至关重要。这也提醒我们在依赖开源库时,需要密切关注其版本更新日志和API变更说明。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492