LLaMA-Factory项目中特殊标记(special token)训练问题的深度解析
2025-05-02 02:37:01作者:范垣楠Rhoda
问题背景
在LLaMA-Factory项目中使用Qwen模型进行微调时,许多开发者遇到了一个共同的技术难题:模型无法正确输出自定义的特殊标记(如<think>和</think>)。这个问题在多个不同规模的Qwen模型(从1.5B到72B参数)上都有出现,引起了广泛关注。
问题现象分析
开发者尝试通过两种方式让模型学习输出特殊标记:
- 直接微调:在训练数据中直接包含
<...>标签 - 特殊标记方法:将
<...>作为special token进行微调
实验发现,对于72B参数的大模型,直接微调方法可以成功输出目标标签,但在7B及以下规模的模型中,两种方法都难以达到预期效果。特别值得注意的是,即使训练过程中添加了new_special_tokens参数并设置了resize_vocab,合并后的模型在推理阶段仍然无法输出这些特殊标记。
技术原理探究
Tokenizer工作机制
Tokenizer在自然语言处理中负责将文本转换为模型可理解的数字表示。当添加新token时,关键是要确保:
- Tokenizer能够识别新token
- 模型的embedding层相应扩展
- 训练过程中这些token得到充分学习
特殊标记与普通标记的区别
特殊标记(special token)在tokenizer中有特殊处理:
- 通常不会被分割
- 可能有特殊的预处理规则(如自动添加空格)
- 在生成过程中可能有特殊行为
而普通标记则作为常规词汇处理。这种差异可能是导致模型难以输出特殊标记的根本原因。
解决方案验证
经过社区多次尝试和验证,最终确定以下有效解决方案:
方法一:修改patcher.py核心代码
在src/llamafactory/model/patcher.py中,直接添加token而非special token:
def patch_tokenizer(tokenizer, model_args):
# 原有代码...
# 关键修改:使用add_tokens而非add_special_tokens
tokenizer.add_tokens(['<think>', '</think>'])
if not model_args.resize_vocab:
model_args.resize_vocab = True
logger.warning_rank0("New tokens have been added, changed `resize_vocab` to True.")
# 原有特殊标记处理代码...
方法二:训练配置优化
在训练配置文件中确保包含以下关键参数:
additional_target: embed_tokens,lm_head
resize_vocab: true
方法三:合并模型时的注意事项
在合并LoRA适配器时,配置文件中同样需要指定:
new_special_tokens: "<think>,</think>"
resize_vocab: true
技术细节深入
Embedding层更新机制
当添加新token时,必须确保:
embed_tokens和lm_head层被正确更新- 新token的embedding被合理初始化(通常使用已有token的平均)
训练过程中的关键点
- 数据预处理:确保训练数据中的目标标记被正确tokenize
- 损失计算:这些token在训练时应该获得足够的梯度更新
- 评估验证:在验证集上专门检查这些token的输出情况
实践建议
- 模型规模选择:对于复杂任务,建议使用7B及以上参数的模型
- 训练数据量:确保有足够多的样本包含目标标记
- 监控指标:添加专门针对这些token输出的评估指标
- 渐进式训练:可以先在小规模数据上测试token输出能力,再全面训练
结论
通过将特殊标记作为普通token处理而非special token,配合正确的训练配置和模型合并流程,可以有效地解决LLaMA-Factory项目中Qwen模型无法输出自定义标记的问题。这一解决方案不仅适用于<think>类标记,也可推广到其他需要模型学习输出特定格式的场景。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
Ascend Extension for PyTorch
Python
221
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.86 K
React Native鸿蒙化仓库
JavaScript
260
322