LLaMA-Factory项目中特殊标记(special token)训练问题的深度解析
2025-05-02 23:47:49作者:范垣楠Rhoda
问题背景
在LLaMA-Factory项目中使用Qwen模型进行微调时,许多开发者遇到了一个共同的技术难题:模型无法正确输出自定义的特殊标记(如<think>
和</think>
)。这个问题在多个不同规模的Qwen模型(从1.5B到72B参数)上都有出现,引起了广泛关注。
问题现象分析
开发者尝试通过两种方式让模型学习输出特殊标记:
- 直接微调:在训练数据中直接包含
<...>
标签 - 特殊标记方法:将
<...>
作为special token进行微调
实验发现,对于72B参数的大模型,直接微调方法可以成功输出目标标签,但在7B及以下规模的模型中,两种方法都难以达到预期效果。特别值得注意的是,即使训练过程中添加了new_special_tokens
参数并设置了resize_vocab
,合并后的模型在推理阶段仍然无法输出这些特殊标记。
技术原理探究
Tokenizer工作机制
Tokenizer在自然语言处理中负责将文本转换为模型可理解的数字表示。当添加新token时,关键是要确保:
- Tokenizer能够识别新token
- 模型的embedding层相应扩展
- 训练过程中这些token得到充分学习
特殊标记与普通标记的区别
特殊标记(special token)在tokenizer中有特殊处理:
- 通常不会被分割
- 可能有特殊的预处理规则(如自动添加空格)
- 在生成过程中可能有特殊行为
而普通标记则作为常规词汇处理。这种差异可能是导致模型难以输出特殊标记的根本原因。
解决方案验证
经过社区多次尝试和验证,最终确定以下有效解决方案:
方法一:修改patcher.py核心代码
在src/llamafactory/model/patcher.py
中,直接添加token而非special token:
def patch_tokenizer(tokenizer, model_args):
# 原有代码...
# 关键修改:使用add_tokens而非add_special_tokens
tokenizer.add_tokens(['<think>', '</think>'])
if not model_args.resize_vocab:
model_args.resize_vocab = True
logger.warning_rank0("New tokens have been added, changed `resize_vocab` to True.")
# 原有特殊标记处理代码...
方法二:训练配置优化
在训练配置文件中确保包含以下关键参数:
additional_target: embed_tokens,lm_head
resize_vocab: true
方法三:合并模型时的注意事项
在合并LoRA适配器时,配置文件中同样需要指定:
new_special_tokens: "<think>,</think>"
resize_vocab: true
技术细节深入
Embedding层更新机制
当添加新token时,必须确保:
embed_tokens
和lm_head
层被正确更新- 新token的embedding被合理初始化(通常使用已有token的平均)
训练过程中的关键点
- 数据预处理:确保训练数据中的目标标记被正确tokenize
- 损失计算:这些token在训练时应该获得足够的梯度更新
- 评估验证:在验证集上专门检查这些token的输出情况
实践建议
- 模型规模选择:对于复杂任务,建议使用7B及以上参数的模型
- 训练数据量:确保有足够多的样本包含目标标记
- 监控指标:添加专门针对这些token输出的评估指标
- 渐进式训练:可以先在小规模数据上测试token输出能力,再全面训练
结论
通过将特殊标记作为普通token处理而非special token,配合正确的训练配置和模型合并流程,可以有效地解决LLaMA-Factory项目中Qwen模型无法输出自定义标记的问题。这一解决方案不仅适用于<think>
类标记,也可推广到其他需要模型学习输出特定格式的场景。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K