Azure Sentinel中Exchange Security Insights On-Premise解析器故障排查指南
问题背景
在Azure Sentinel的Exchange Security Insights On-Premise解决方案中,用户报告了一个关于ExchangeAdminAuditLogs()解析器的功能异常。该解析器在执行时返回KQL函数参数错误,提示"union: must have at least one operand that can be evaluated successfully when running with 'Fuzzy' mode"。
技术分析
ExchangeAdminAuditLogs()解析器是Exchange Security Insights On-Premise解决方案的核心组件之一,主要用于解析Exchange服务器的管理审计日志。该解析器通过以下方式工作:
- 从外部数据源获取Cmdlet监视列表
- 检查VIP用户列表
- 解析MSExchange Management事件日志中的特定事件ID(1和6)
- 对Cmdlet操作进行敏感性和权限分析
故障现象
当用户直接从内容中心安装Exchange On-Prem内容包后,在Log Analytics中运行ExchangeAdminAuditLogs()解析器时,会遇到以下错误:
union: must have at least one operand that can be evaluated successfully when running with 'Fuzzy' mode
根本原因
经过技术团队分析,该问题主要由以下原因导致:
- 缺少必要的数据连接器:Exchange Security Insights On-Premises Collector数据连接器未配置
- 依赖表缺失:工作区中缺少ESIAPIExchange或ESIExchange系列表
- 解析器依赖链不完整:ExchangeAdminAuditLogs()解析器依赖于ExchangeConfiguration解析器
解决方案
要解决此问题,需要执行以下步骤:
-
配置数据连接器:
- 确保已安装并配置Exchange Security Insights On-Premises Collector数据连接器
- 验证数据连接器是否正常运行并收集数据
-
验证数据表:
- 检查工作区中是否存在ESIAPIExchange或ESIExchange系列表
- 确认MSExchange Management表中有数据
-
检查依赖解析器:
- 确保ExchangeConfiguration解析器可用
- 验证ExchangeConfiguration解析器能正确返回环境配置信息
-
重新运行解析器:
- 在确保上述组件都就位后,再次尝试运行ExchangeAdminAuditLogs()解析器
最佳实践建议
为避免类似问题,建议用户:
- 在安装内容包前,仔细阅读解决方案的所有先决条件
- 按照官方文档的完整部署指南进行操作
- 部署后验证所有组件是否正常工作
- 定期检查数据连接器的运行状态
- 建立监控机制,及时发现解析器执行失败的情况
总结
Exchange Security Insights On-Premise解决方案提供了强大的Exchange服务器安全监控能力,但其组件间存在复杂的依赖关系。通过正确配置所有必要组件,特别是Exchange Security Insights On-Premises Collector数据连接器,可以确保ExchangeAdminAuditLogs()解析器正常工作,从而实现对Exchange管理活动的有效监控和分析。
对于遇到类似问题的用户,建议按照本文提供的解决方案逐步排查,确保所有依赖项都已正确配置和运行。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00