Ax框架中qNEHVI算法的参考点自动推断机制解析
2025-07-01 19:31:21作者:齐冠琰
引言
在基于Ax框架的多目标优化任务中,qNoisyExpectedHypervolumeImprovement(qNEHVI)算法是一个常用的采集函数。该算法需要指定参考点(ref_point)来计算超体积改进值。然而,许多开发者可能没有注意到,当没有显式设置参考点时,Ax框架会自动进行参考点推断。本文将深入剖析这一机制的实现原理。
参考点的重要性
在多目标优化中,参考点定义了目标空间中用于计算超体积的边界点。它通常代表了一个"最差"的目标值组合,所有非支配解都应该优于这个参考点。参考点的选择直接影响:
- 超体积计算结果
- 算法对帕累托前沿不同区域的偏好
- 优化过程的收敛性
Ax的自动推断机制
当开发者没有显式设置参考点时,Ax框架通过botorch_moo_defaults.infer_objective_thresholds方法自动推断参考点。这一过程发生在两个关键场景:
1. 优化过程中的推断
当调用client.complete_trial()方法时,框架会触发以下处理流程:
- 通过生成策略获取新试验点
- 检查是否配置了参考点
- 若未配置,则调用推断方法
- 使用推断结果作为qNEHVI的参考点
2. 获取帕累托前沿时的推断
当调用client.get_pareto_frontier()方法时,框架会:
- 检查优化配置中是否包含目标阈值
- 若不存在,则自动推断目标阈值
- 记录推断结果供后续使用
推断方法的技术实现
核心推断方法infer_objective_thresholds的工作流程如下:
- 模型准备:基于当前实验数据构建高斯过程模型
- 观察点处理:获取所有已观察到的试验点
- 约束处理:考虑所有输出约束条件
- 阈值计算:基于模型预测和观察数据计算各目标的合理阈值
- 结果转换:将结果转换回原始目标空间
该方法会考虑以下因素:
- 当前实验的搜索空间
- 优化配置中的约束条件
- 已完成的试验数据
- 模型的预测能力
实际应用建议
- 显式设置参考点:对于关键任务,建议显式设置参考点以确保优化方向符合预期
- 监控推断结果:定期检查自动推断的参考点是否合理
- 结果验证:比较自动推断结果与领域知识预期
- 参数调优:必要时调整推断方法的参数以获得更好的参考点
总结
Ax框架通过智能的参考点自动推断机制,降低了多目标优化的使用门槛,使开发者能够在不完全了解超体积优化细节的情况下获得良好的优化结果。理解这一机制有助于开发者更好地控制和调整优化过程,在自动化和精确控制之间取得平衡。
对于需要精细控制优化过程的场景,建议结合自动推断和人工设置,充分利用框架提供的灵活性,获得最佳的优化效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135