AWS Deep Learning Containers发布PyTorch 2.5.1推理专用镜像
2025-07-07 17:48:50作者:龚格成
AWS Deep Learning Containers(DLC)项目为开发者提供了预配置的深度学习环境容器镜像,这些镜像经过AWS官方优化和测试,可以直接部署在Amazon ECS、Amazon EKS和SageMaker等服务上。近日,该项目发布了针对PyTorch 2.5.1框架的推理专用容器镜像更新。
镜像版本概览
本次发布的镜像基于PyTorch 2.5.1版本构建,支持Python 3.11运行环境,并提供了CPU和GPU两种计算架构的选择:
- CPU版本:基于Ubuntu 22.04操作系统,适用于不需要GPU加速的推理场景
- GPU版本:同样基于Ubuntu 22.04,支持CUDA 12.4计算架构,可充分利用NVIDIA GPU的并行计算能力
关键技术组件
这些镜像预装了PyTorch生态系统中的核心组件:
- PyTorch核心:2.5.1版本,针对CPU和CUDA 12.4分别优化
- TorchVision:0.20.1版本,提供计算机视觉相关功能
- TorchAudio:2.5.1版本,支持音频处理任务
- TorchServe:0.12.0版本,用于模型部署和服务化
镜像中还包含了科学计算和数据处理的常用库:
- NumPy 2.1.3:高性能数值计算基础库
- Pandas 2.2.3:数据处理和分析工具
- scikit-learn 1.5.2:机器学习算法库
- OpenCV 4.10.0:计算机视觉库
系统级优化
AWS对这些镜像进行了系统级的优化:
- 编译器支持:包含了GCC 11和libstdc++6等基础编译工具链
- CUDA生态:GPU版本完整集成了CUDA 12.4工具包和cuDNN加速库
- 开发工具:预装了Emacs等开发环境工具
使用场景
这些预构建的容器镜像特别适合以下场景:
- 模型服务化:通过TorchServe快速部署训练好的PyTorch模型
- 推理性能测试:在不同硬件配置下评估模型推理性能
- 生产环境部署:在Amazon SageMaker等平台上构建稳定的推理服务
版本兼容性
需要注意的是,这些镜像基于PyTorch 2.5.1版本构建,开发者需要确保自己的模型代码和依赖库与该版本兼容。特别是NumPy 2.x系列与之前版本存在一些API变化,迁移时需要注意兼容性问题。
AWS Deep Learning Containers的这种定期更新机制,使得开发者能够始终使用最新的稳定版框架和工具,同时免去了自行配置环境的复杂过程,大大提高了深度学习应用的开发效率。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
636
144
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
652
276
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
245
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
73
98
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.73 K