PaddleOCR训练过程中RecursionError问题分析与解决
2025-05-01 13:04:59作者:宣利权Counsellor
问题现象
在使用PaddleOCR进行自定义数据集训练时,开发者遇到了"RecursionError: maximum recursion depth exceeded in comparison"错误。具体表现为在解析训练数据时出现数组越界错误,提示"IndexError: list index out of range"。
问题原因分析
经过深入分析,这类问题通常由以下几个原因导致:
-
训练数据格式不规范:PaddleOCR对训练数据文件(training.txt)有严格的格式要求,必须是"图片路径\t标签\n"的格式。如果格式不正确,解析时就会出现问题。
-
字典文件配置缺失:在训练配置中,character_dict_path参数未正确设置或路径错误,导致字符字典加载失败。
-
数据量过少:虽然问题中提到的数据集只有几张图片,但这通常不会直接导致递归错误,更多会影响模型训练效果。
-
ext_data配置问题:从错误信息看,程序在尝试获取额外数据(ext_data)时失败,可能与配置文件中的相关设置有关。
解决方案
1. 检查训练数据格式
确保training.txt文件格式完全符合要求:
- 每行格式为:图片绝对路径 + 制表符(\t) + 标签内容 + 换行符(\n)
- 路径和标签之间必须使用制表符分隔,不能使用空格
- 检查文件编码,推荐使用UTF-8无BOM格式
2. 验证字典文件配置
在训练配置yml文件中:
- 确认character_dict_path参数已正确设置
- 检查字典文件路径是否正确
- 确保字典文件包含训练数据中出现的所有字符
3. 调整ext_data配置
如果不需要使用额外数据:
- 在配置文件中将use_ext_data设置为False
- 或者确保ext_data相关配置正确无误
4. 其他建议
- 增加训练数据量:虽然少量数据不会直接导致此错误,但建议至少准备数百张图片以获得较好的训练效果
- 检查图片路径是否包含中文或特殊字符,这有时会导致解析问题
- 验证图片文件是否都能正常打开,损坏的图片文件可能导致解析异常
技术原理
PaddleOCR在数据加载时,会递归地解析训练文件并构建数据管道。当遇到格式错误的数据行时,可能导致递归深度不断增加,最终触发Python的递归深度保护机制。正确的数据格式和配置是保证训练流程顺利进行的基础。
总结
PaddleOCR训练过程中的递归错误通常源于数据格式问题而非数据量大小。开发者应重点检查训练数据的格式规范性和配置文件参数完整性。通过规范数据准备流程和仔细检查配置参数,可以有效避免此类问题的发生。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0102
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
288
340
暂无简介
Dart
729
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
448
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
452
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705