AutoPrompt项目:基于LLM的提示词优化技术实践
2025-06-30 12:52:00作者:翟江哲Frasier
概述
在大型语言模型(LLM)应用开发中,提示词工程(Prompt Engineering)是一个关键环节。AutoPrompt项目提供了一种自动化优化提示词的方法,特别适合需要针对特定任务优化开源模型提示词的场景。
核心架构
AutoPrompt采用三层架构设计:
-
优化器LLM:负责生成合成数据、提出新的提示词建议以及进行错误分析。建议使用性能较强的LLM模型。
-
预测器LLM:实际执行目标任务的模型,可以是HuggingFace Pipeline中的开源模型,如Llama-3等。
-
标注系统:支持多种标注方式,包括GPT-4自动标注和Argilla人工标注平台。
典型应用场景
以文本摘要生成为例,开发者通常需要优化提示词中的指令部分,而保持输入文本部分不变。例如:
Summarize text. Keep key events. # 这是需要优化的部分
Text:
{text_str} # 这是固定输入部分
Summary:
AutoPrompt可以帮助开发者:
- 生成多个不同提示词下的摘要样本
- 通过人工或自动方式标注样本质量
- 分析优质样本的特征模式
- 迭代优化提示词
配置实践
在配置文件中,需要特别注意三个关键部分:
-
优化器LLM配置:位于配置文件的
llm
部分,建议使用性能较强的模型。 -
预测器LLM配置:对于开源模型,可使用HuggingFacePipeline作为预测器。
-
标注器配置:支持GPT-4自动标注或Argilla人工标注平台。
技术优势
相比传统手动调优,AutoPrompt具有以下优势:
-
系统性:通过结构化流程确保提示词优化的全面性。
-
可扩展性:支持多种LLM模型和标注方式。
-
高效性:自动化生成和评估大幅提升优化效率。
实施建议
对于初次使用者,建议:
-
明确区分提示词中需要优化的部分和固定部分。
-
从小规模样本开始,逐步扩大优化范围。
-
结合人工评估和自动评估,确保优化质量。
-
关注优化器LLM的选择,这对最终效果有显著影响。
AutoPrompt为LLM应用开发者提供了一套完整的提示词优化解决方案,特别适合需要针对特定任务定制提示词的场景。通过合理配置和迭代优化,开发者可以显著提升模型在目标任务上的表现。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58