AutoPrompt项目:基于LLM的提示词优化技术实践
2025-06-30 10:45:08作者:翟江哲Frasier
概述
在大型语言模型(LLM)应用开发中,提示词工程(Prompt Engineering)是一个关键环节。AutoPrompt项目提供了一种自动化优化提示词的方法,特别适合需要针对特定任务优化开源模型提示词的场景。
核心架构
AutoPrompt采用三层架构设计:
-
优化器LLM:负责生成合成数据、提出新的提示词建议以及进行错误分析。建议使用性能较强的LLM模型。
-
预测器LLM:实际执行目标任务的模型,可以是HuggingFace Pipeline中的开源模型,如Llama-3等。
-
标注系统:支持多种标注方式,包括GPT-4自动标注和Argilla人工标注平台。
典型应用场景
以文本摘要生成为例,开发者通常需要优化提示词中的指令部分,而保持输入文本部分不变。例如:
Summarize text. Keep key events. # 这是需要优化的部分
Text:
{text_str} # 这是固定输入部分
Summary:
AutoPrompt可以帮助开发者:
- 生成多个不同提示词下的摘要样本
- 通过人工或自动方式标注样本质量
- 分析优质样本的特征模式
- 迭代优化提示词
配置实践
在配置文件中,需要特别注意三个关键部分:
-
优化器LLM配置:位于配置文件的
llm
部分,建议使用性能较强的模型。 -
预测器LLM配置:对于开源模型,可使用HuggingFacePipeline作为预测器。
-
标注器配置:支持GPT-4自动标注或Argilla人工标注平台。
技术优势
相比传统手动调优,AutoPrompt具有以下优势:
-
系统性:通过结构化流程确保提示词优化的全面性。
-
可扩展性:支持多种LLM模型和标注方式。
-
高效性:自动化生成和评估大幅提升优化效率。
实施建议
对于初次使用者,建议:
-
明确区分提示词中需要优化的部分和固定部分。
-
从小规模样本开始,逐步扩大优化范围。
-
结合人工评估和自动评估,确保优化质量。
-
关注优化器LLM的选择,这对最终效果有显著影响。
AutoPrompt为LLM应用开发者提供了一套完整的提示词优化解决方案,特别适合需要针对特定任务定制提示词的场景。通过合理配置和迭代优化,开发者可以显著提升模型在目标任务上的表现。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
532
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

Ascend Extension for PyTorch
Python
75
106

仓颉编程语言测试用例。
Cangjie
34
61

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401