PyTorch自然语言处理实战:第3章 监督学习训练与情感分类案例解析
2025-06-02 13:46:50作者:薛曦旖Francesca
本文基于《NLP with PyTorch》第3章内容,深入讲解监督学习在自然语言处理中的应用。我们将从基础概念出发,逐步构建完整的文本分类模型,并通过两个典型案例帮助读者掌握核心技能。
一、监督学习基础概念
监督学习是机器学习中最常见的范式之一,其核心思想是利用已标注的训练数据来构建预测模型。在NLP领域,监督学习广泛应用于文本分类、情感分析、命名实体识别等任务。
本章重点介绍以下关键组件:
- 模型架构(如感知机)
- 激活函数(Sigmoid、ReLU等)
- 损失函数(交叉熵、MSE等)
- 优化算法(如Adam)
二、感知机模型与激活函数详解
感知机是最简单的神经网络模型,本章提供了PyTorch实现示例:
import torch
import torch.nn as nn
class Perceptron(nn.Module):
def __init__(self, input_dim):
super(Perceptron, self).__init__()
self.fc = nn.Linear(input_dim, 1)
def forward(self, x):
return torch.sigmoid(self.fc(x))
常用激活函数实现
- Sigmoid函数:将输出压缩到(0,1)区间
def sigmoid_activation(z):
return 1/(1+torch.exp(-z))
- ReLU函数:解决梯度消失问题
def relu_activation(z):
return torch.max(z, torch.zeros_like(z))
- Softmax函数:多分类任务常用
def softmax(z):
return torch.exp(z)/torch.sum(torch.exp(z), dim=1)
三、损失函数对比与应用场景
- 均方误差(MSE):适用于回归任务
mse_loss = nn.MSELoss()
- 交叉熵损失:分类任务首选
ce_loss = nn.CrossEntropyLoss()
- 二元交叉熵:二分类专用
bce_loss = nn.BCELoss()
四、实战案例1:合成数据二分类
我们首先生成一个简单的二维合成数据集,演示感知机如何学习决策边界:
- 数据生成:使用sklearn的make_classification
- 模型训练:设置学习率、迭代次数等超参数
- 结果可视化:绘制决策边界和分类效果
这个案例帮助读者直观理解模型如何从数据中学习规律。
五、实战案例2:Yelp评论情感分析
本案例完整展示NLP项目流程:
1. 数据预处理
# 示例数据清洗代码
def clean_text(text):
text = text.lower()
text = re.sub(r"i'm", "i am", text)
text = re.sub(r"\r", "", text)
return text
提供"精简版"和"完整版"两种数据集方案,适应不同硬件环境。
2. 构建词汇表(Vocabulary)
class Vocabulary:
def __init__(self):
self.token2idx = {}
self.idx2token = {}
def add_token(self, token):
if token not in self.token2idx:
idx = len(self.token2idx)
self.token2idx[token] = idx
self.idx2token[idx] = token
3. 文本向量化(Vectorizer)
将文本转换为模型可处理的数值向量:
class Vectorizer:
def __init__(self, vocabulary):
self.vocabulary = vocabulary
def vectorize(self, text):
one_hot = torch.zeros(len(self.vocabulary))
for token in text.split():
if token in self.vocabulary.token2idx:
one_hot[self.vocabulary.token2idx[token]] = 1
return one_hot
4. 模型训练与评估
完整训练流程包括:
- 数据加载器准备
- 模型初始化
- 损失函数和优化器设置
- 训练循环
- 验证集评估
# 训练循环示例
for epoch in range(num_epochs):
for batch in train_loader:
optimizer.zero_grad()
outputs = model(batch['features'])
loss = criterion(outputs, batch['label'])
loss.backward()
optimizer.step()
5. 结果分析与模型解释
分析模型学到的权重,识别对分类结果影响最大的词汇:
# 获取最重要的特征
def get_important_features(model, vocabulary, n=10):
weights = model.fc.weight.data.numpy().flatten()
indices = np.argsort(weights)[-n:]
return [(vocabulary.idx2token[i], weights[i]) for i in indices]
六、关键知识点总结
- 数据流水线构建:从原始文本到模型输入的完整转换流程
- 模型设计原则:根据任务复杂度选择合适的网络结构
- 超参数调优:学习率、批量大小等对训练的影响
- 评估指标选择:准确率、F1值等在不同场景下的应用
通过本章学习,读者将掌握使用PyTorch构建NLP模型的核心方法,并能够独立完成从数据准备到模型部署的完整流程。后续章节将在此基础上引入更复杂的神经网络结构。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1