PyTorch自然语言处理实战:第3章 监督学习训练与情感分类案例解析
2025-06-02 08:20:22作者:薛曦旖Francesca
本文基于《NLP with PyTorch》第3章内容,深入讲解监督学习在自然语言处理中的应用。我们将从基础概念出发,逐步构建完整的文本分类模型,并通过两个典型案例帮助读者掌握核心技能。
一、监督学习基础概念
监督学习是机器学习中最常见的范式之一,其核心思想是利用已标注的训练数据来构建预测模型。在NLP领域,监督学习广泛应用于文本分类、情感分析、命名实体识别等任务。
本章重点介绍以下关键组件:
- 模型架构(如感知机)
- 激活函数(Sigmoid、ReLU等)
- 损失函数(交叉熵、MSE等)
- 优化算法(如Adam)
二、感知机模型与激活函数详解
感知机是最简单的神经网络模型,本章提供了PyTorch实现示例:
import torch
import torch.nn as nn
class Perceptron(nn.Module):
def __init__(self, input_dim):
super(Perceptron, self).__init__()
self.fc = nn.Linear(input_dim, 1)
def forward(self, x):
return torch.sigmoid(self.fc(x))
常用激活函数实现
- Sigmoid函数:将输出压缩到(0,1)区间
def sigmoid_activation(z):
return 1/(1+torch.exp(-z))
- ReLU函数:解决梯度消失问题
def relu_activation(z):
return torch.max(z, torch.zeros_like(z))
- Softmax函数:多分类任务常用
def softmax(z):
return torch.exp(z)/torch.sum(torch.exp(z), dim=1)
三、损失函数对比与应用场景
- 均方误差(MSE):适用于回归任务
mse_loss = nn.MSELoss()
- 交叉熵损失:分类任务首选
ce_loss = nn.CrossEntropyLoss()
- 二元交叉熵:二分类专用
bce_loss = nn.BCELoss()
四、实战案例1:合成数据二分类
我们首先生成一个简单的二维合成数据集,演示感知机如何学习决策边界:
- 数据生成:使用sklearn的make_classification
- 模型训练:设置学习率、迭代次数等超参数
- 结果可视化:绘制决策边界和分类效果
这个案例帮助读者直观理解模型如何从数据中学习规律。
五、实战案例2:Yelp评论情感分析
本案例完整展示NLP项目流程:
1. 数据预处理
# 示例数据清洗代码
def clean_text(text):
text = text.lower()
text = re.sub(r"i'm", "i am", text)
text = re.sub(r"\r", "", text)
return text
提供"精简版"和"完整版"两种数据集方案,适应不同硬件环境。
2. 构建词汇表(Vocabulary)
class Vocabulary:
def __init__(self):
self.token2idx = {}
self.idx2token = {}
def add_token(self, token):
if token not in self.token2idx:
idx = len(self.token2idx)
self.token2idx[token] = idx
self.idx2token[idx] = token
3. 文本向量化(Vectorizer)
将文本转换为模型可处理的数值向量:
class Vectorizer:
def __init__(self, vocabulary):
self.vocabulary = vocabulary
def vectorize(self, text):
one_hot = torch.zeros(len(self.vocabulary))
for token in text.split():
if token in self.vocabulary.token2idx:
one_hot[self.vocabulary.token2idx[token]] = 1
return one_hot
4. 模型训练与评估
完整训练流程包括:
- 数据加载器准备
- 模型初始化
- 损失函数和优化器设置
- 训练循环
- 验证集评估
# 训练循环示例
for epoch in range(num_epochs):
for batch in train_loader:
optimizer.zero_grad()
outputs = model(batch['features'])
loss = criterion(outputs, batch['label'])
loss.backward()
optimizer.step()
5. 结果分析与模型解释
分析模型学到的权重,识别对分类结果影响最大的词汇:
# 获取最重要的特征
def get_important_features(model, vocabulary, n=10):
weights = model.fc.weight.data.numpy().flatten()
indices = np.argsort(weights)[-n:]
return [(vocabulary.idx2token[i], weights[i]) for i in indices]
六、关键知识点总结
- 数据流水线构建:从原始文本到模型输入的完整转换流程
- 模型设计原则:根据任务复杂度选择合适的网络结构
- 超参数调优:学习率、批量大小等对训练的影响
- 评估指标选择:准确率、F1值等在不同场景下的应用
通过本章学习,读者将掌握使用PyTorch构建NLP模型的核心方法,并能够独立完成从数据准备到模型部署的完整流程。后续章节将在此基础上引入更复杂的神经网络结构。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
312
2.73 K
deepin linux kernel
C
24
7
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
244
仓颉编译器源码及 cjdb 调试工具。
C++
124
851
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
Ascend Extension for PyTorch
Python
151
178
暂无简介
Dart
605
135
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
236
84
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.01 K
React Native鸿蒙化仓库
JavaScript
237
310