XTuner项目中全参微调与QLoRA训练数据路径配置差异解析
2025-06-13 19:51:11作者:霍妲思
在XTuner项目中进行大模型微调时,许多开发者会遇到一个常见问题:同样的数据路径配置在QLoRA训练中可以正常工作,但在全参数微调(full fine-tuning)时却会报错。本文将深入分析这一现象的技术原因,并提供正确的配置方法。
问题现象
当开发者使用XTuner进行InternLM2-1.8B模型的全参数微调时,可能会遇到类似以下的错误信息:
FileNotFoundError: Couldn't find a dataset script at /root/ft/data/Coal_mine_safety_data.json/Coal_mine_safety_data.json.py or any data file in the same directory.
而奇怪的是,同样的JSON文件路径在QLoRA微调中却能正常工作。这种差异往往让开发者感到困惑。
技术背景解析
这种现象的根本原因在于XTuner底层对数据集加载方式的不同处理机制:
- QLoRA微调:通常使用Hugging Face的
datasets库的默认加载方式,能够自动识别JSON文件格式 - 全参数微调:由于涉及更复杂的分布式训练流程,需要更明确地指定数据加载方式
正确配置方案
对于JSON格式的数据文件,正确的全参数微调配置应该明确指定数据加载类型和文件路径:
train_dataset = dict(
dataset=dict(
type=load_dataset, # 指定使用Hugging Face的load_dataset函数
path='json', # 明确指定加载JSON格式数据
data_files='/path/to/your/data.json' # 完整文件路径
),
# 其他参数...
)
关键差异点
- 显式类型声明:全参数微调需要显式声明
type=load_dataset和path='json' - 路径格式:需要使用
data_files参数而非直接路径 - 分布式兼容性:全参数微调的配置需要确保在分布式环境下各节点能正确访问数据
最佳实践建议
- 对于自定义数据集,始终建议使用明确的格式声明
- 在切换训练模式(QLoRA/全参数)时,检查数据加载配置
- 对于JSON文件,统一使用上述推荐配置格式,可同时兼容两种训练模式
- 开发环境中可先使用小规模数据测试配置正确性
总结
XTuner项目中不同微调方法对数据加载配置的要求差异,反映了底层训练机制的不同。理解这些差异并采用正确的配置方式,可以避免许多常见的训练错误,提高开发效率。记住,明确的数据格式声明和正确的路径指定是保证训练成功的关键因素。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
177
Ascend Extension for PyTorch
Python
340
404
React Native鸿蒙化仓库
JavaScript
302
355
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
暂无简介
Dart
770
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247