OpenVINO 2025.1版本发布:全面升级AI推理性能与模型支持
作为英特尔推出的开源深度学习推理工具包,OpenVINO(Open Visual Inference and Neural Network Optimization)一直致力于为开发者提供高效的AI模型部署解决方案。2025年1月,OpenVINO发布了2025.1.0版本,带来了多项重要更新,显著提升了生成式AI支持、模型压缩技术以及跨平台部署能力。
生成式AI能力全面增强
2025.1版本在生成式AI领域实现了重大突破。首先,新增了对Phi-4 Mini、Jina CLIP v1和Bce Embedding Base v1等先进模型的支持,为开发者提供了更多选择。特别值得注意的是,OpenVINO Model Server现在能够支持视觉语言模型(VLM),包括Qwen2-VL、Phi-3.5-Vision和InternVL2等,这为多模态AI应用开发打开了新的大门。
在图像生成方面,OpenVINO GenAI引入了基于Transformer的图像到图像转换和修复功能,支持Flux.1和Stable Diffusion 3等模型。这些改进使生成的内容更加逼真,为创意设计和内容生成提供了更强大的工具。此外,AI Playground预览版已开始采用OpenVINO GenAI后端,在AI PC上实现了高度优化的推理性能。
大语言模型支持与优化
针对当前火热的大语言模型(LLM)应用场景,2025.1版本进行了多项优化。通过精简CPU插件和移除GEMM内核,显著减小了二进制文件体积。GPU插件中新优化的内核大幅提升了LSTM模型的性能,这对于语音识别、语言建模和时间序列预测等应用尤为重要。
预览功能"Token Eviction"(令牌逐出)的引入是一个创新亮点,它通过消除KV缓存中不重要的令牌来减少内存消耗。这一技术特别适合需要生成长序列的任务,如聊天机器人和代码生成。同时,NPU加速现已支持文本生成任务,使VLM模型能够在AI PC上实现低并发场景下的高效能部署。
跨平台性能提升
2025.1版本加强了对最新英特尔处理器的支持,包括代号为Bartlett Lake的英特尔酷睿2系列处理器,以及代号为Twin Lake的英特尔酷睿3处理器N系列和英特尔处理器N系列。在英特尔酷睿Ultra 200H系列处理器上,LLM性能得到进一步优化,显著改善了Windows和Linux系统下的第二令牌延迟。
GPU插件默认实现了Paged Attention和Continuous Batching技术,不仅提升了性能,还实现了更高效的资源利用。另一个值得关注的预览功能是新的OpenVINO后端支持Executorch,这将使英特尔硬件(包括CPU、GPU和NPU)上的推理加速和性能提升成为可能。
技术演进与未来方向
随着技术的不断发展,2025.1版本也标志着一些旧功能的逐步淘汰。例如,Affinity API属性已被CPU绑定配置取代;Model Optimizer工具正式退出历史舞台,建议开发者使用新的模型转换方法;NNCF中的create_compressed_model()方法也被标记为过时,推荐使用nncf.quantize()进行量化感知训练。
展望未来,OpenVINO团队将继续优化动态形状模型支持,逐步淘汰"auto shape"和"auto batch size"等运行时重塑模型的功能。同时,随着苹果生态的转变,macOS x86平台的支持也将逐步退出。
总体而言,OpenVINO 2025.1版本在生成式AI支持、大模型优化和跨平台性能方面取得了显著进步,为开发者提供了更强大、更灵活的工具集,助力AI应用在各种硬件平台上的高效部署。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00