OpenVINO 2025.1版本发布:全面升级AI推理性能与模型支持
作为英特尔推出的开源深度学习推理工具包,OpenVINO(Open Visual Inference and Neural Network Optimization)一直致力于为开发者提供高效的AI模型部署解决方案。2025年1月,OpenVINO发布了2025.1.0版本,带来了多项重要更新,显著提升了生成式AI支持、模型压缩技术以及跨平台部署能力。
生成式AI能力全面增强
2025.1版本在生成式AI领域实现了重大突破。首先,新增了对Phi-4 Mini、Jina CLIP v1和Bce Embedding Base v1等先进模型的支持,为开发者提供了更多选择。特别值得注意的是,OpenVINO Model Server现在能够支持视觉语言模型(VLM),包括Qwen2-VL、Phi-3.5-Vision和InternVL2等,这为多模态AI应用开发打开了新的大门。
在图像生成方面,OpenVINO GenAI引入了基于Transformer的图像到图像转换和修复功能,支持Flux.1和Stable Diffusion 3等模型。这些改进使生成的内容更加逼真,为创意设计和内容生成提供了更强大的工具。此外,AI Playground预览版已开始采用OpenVINO GenAI后端,在AI PC上实现了高度优化的推理性能。
大语言模型支持与优化
针对当前火热的大语言模型(LLM)应用场景,2025.1版本进行了多项优化。通过精简CPU插件和移除GEMM内核,显著减小了二进制文件体积。GPU插件中新优化的内核大幅提升了LSTM模型的性能,这对于语音识别、语言建模和时间序列预测等应用尤为重要。
预览功能"Token Eviction"(令牌逐出)的引入是一个创新亮点,它通过消除KV缓存中不重要的令牌来减少内存消耗。这一技术特别适合需要生成长序列的任务,如聊天机器人和代码生成。同时,NPU加速现已支持文本生成任务,使VLM模型能够在AI PC上实现低并发场景下的高效能部署。
跨平台性能提升
2025.1版本加强了对最新英特尔处理器的支持,包括代号为Bartlett Lake的英特尔酷睿2系列处理器,以及代号为Twin Lake的英特尔酷睿3处理器N系列和英特尔处理器N系列。在英特尔酷睿Ultra 200H系列处理器上,LLM性能得到进一步优化,显著改善了Windows和Linux系统下的第二令牌延迟。
GPU插件默认实现了Paged Attention和Continuous Batching技术,不仅提升了性能,还实现了更高效的资源利用。另一个值得关注的预览功能是新的OpenVINO后端支持Executorch,这将使英特尔硬件(包括CPU、GPU和NPU)上的推理加速和性能提升成为可能。
技术演进与未来方向
随着技术的不断发展,2025.1版本也标志着一些旧功能的逐步淘汰。例如,Affinity API属性已被CPU绑定配置取代;Model Optimizer工具正式退出历史舞台,建议开发者使用新的模型转换方法;NNCF中的create_compressed_model()方法也被标记为过时,推荐使用nncf.quantize()进行量化感知训练。
展望未来,OpenVINO团队将继续优化动态形状模型支持,逐步淘汰"auto shape"和"auto batch size"等运行时重塑模型的功能。同时,随着苹果生态的转变,macOS x86平台的支持也将逐步退出。
总体而言,OpenVINO 2025.1版本在生成式AI支持、大模型优化和跨平台性能方面取得了显著进步,为开发者提供了更强大、更灵活的工具集,助力AI应用在各种硬件平台上的高效部署。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00