Rspack v1.2.4 发布:支持 SRI 安全特性与性能优化
Rspack 是一个基于 Rust 的高性能构建工具,它结合了 Webpack 的生态优势和 Rust 语言的性能优势。作为 Webpack 的替代方案,Rspack 在构建速度上有着显著提升,同时保持了良好的兼容性。
核心特性:Subresource Integrity (SRI) 支持
本次发布的 v1.2.4 版本中,最值得关注的特性是新增了对 Subresource Integrity (SRI) 的原生支持。SRI 是一种重要的 Web 安全机制,它通过为外部资源添加加密哈希值,确保这些资源在传输过程中没有被篡改。
Rspack 通过内置的 SubresourceIntegrityPlugin 实现了这一功能。该插件是 webpack-subresource-integrity 的 Rust 重写版本,在性能上有了显著提升。开发者可以通过简单的配置启用这一安全特性:
import { experiments } from '@rspack/core';
const { SubresourceIntegrityPlugin } = experiments;
export default {
plugins: [new SubresourceIntegrityPlugin()],
output: {
crossOriginLoading: 'anonymous',
},
};
启用后,Rspack 会为所有加载的外部资源生成完整性哈希值,并自动添加到 HTML 中。这为现代 Web 应用提供了额外的安全防护层,特别是在使用 CDN 资源时尤为重要。
性能优化持续深入
Rspack 团队持续关注构建性能,本次更新包含了多项优化措施:
- 模块重用优化:改进了模块在多次编译间的重用机制,减少了不必要的重复处理。
- Rust 级别优化:调整了 Rust 编译器的优化级别,提升了整体执行效率。
- 异步任务处理:重构了模块重建的异步任务机制,使构建过程更加稳定可靠。
这些优化使得 Rspack 在大型项目中的构建速度进一步提升,特别是在增量构建场景下表现更为突出。
功能增强与问题修复
除了核心特性外,本次更新还包含了一系列功能增强和问题修复:
- 分块命名增强:支持在分块配置中使用整体文件名模式,提供了更灵活的代码分割控制。
- 缓存组测试支持:现在可以在缓存组测试中使用 chunkGraph 和 moduleGraph,为高级代码分割策略提供了更多可能性。
- Windows 路径修复:解决了 Windows 系统下 "publicPath: auto" 配置的路径问题。
- 动态入口依赖:改进了动态入口的依赖处理逻辑,确保依赖关系正确维护。
开发者体验改进
Rspack 团队也持续关注开发者体验:
- CLI 增强:新增了
--config-loader选项,支持通过命令行指定配置文件加载器。 - 内置加载器支持:现在可以通过编译器构建器启用内置加载器。
- 文档更新:完善了插件兼容性状态文档,并更新了项目路线图,新增了 Wasm 构建和 Rstest 等未来目标。
总结
Rspack v1.2.4 版本在安全性、性能和开发者体验三个方面都做出了显著改进。特别是 SRI 支持的增加,使得 Rspack 在构建现代安全 Web 应用方面又向前迈进了一步。持续的性能优化也进一步巩固了 Rspack 在构建速度上的优势地位。
随着 Rspack 生态的不断完善,它正在成为越来越多前端团队构建工具的新选择。对于关注构建性能和现代 Web 安全特性的团队来说,这个版本值得考虑升级。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00