BoTorch入门示例代码优化指南
现状分析
BoTorch官方文档首页展示的"Get Started"示例代码存在几个需要改进的问题。这段代码虽然简洁,但未能体现当前BoTorch使用的最佳实践,可能会给初学者带来困惑或导致潜在问题。
主要问题点
-
标准化处理不当:示例中使用
standardize
函数直接处理输出数据,这会导致模型预测结果保持在标准化后的空间,不利于结果解释。更推荐使用Standardize
结果转换器。 -
输入标准化缺失:示例中没有展示输入数据的标准化处理,而BoTorch通常会建议用户对输入数据进行标准化以获得更好的模型性能。
-
数据类型问题:示例中使用单精度浮点数(torch.float32),而现代深度学习实践更推荐使用双精度浮点数(torch.float64)以获得更好的数值稳定性。
-
采集函数选择:示例中使用Upper Confidence Bound(UCB)作为采集函数,但实际上Log Expected Improvement(LogEI)系列采集函数在多数情况下是更优选择。
改进建议
1. 使用转换器代替直接标准化
推荐使用BoTorch提供的Standardize
转换器来处理输出数据,这样可以自动处理训练和预测时的数据转换,保持预测结果在原始空间。
2. 添加输入标准化
应该添加Normalize
输入转换器,特别是当输入特征具有不同尺度时,这能显著提高模型性能。
3. 使用双精度浮点数
将数据和模型参数统一使用torch.float64
类型,避免数值精度问题导致的警告信息。
4. 更新采集函数
考虑使用qLogNoisyExpectedImprovement
等更现代的采集函数,它们在实践中通常表现更好。
示例代码改进方向
改进后的示例代码应该:
- 明确定义输入输出转换器
- 使用双精度数据类型
- 选择更合适的采集函数
- 保持代码简洁性的同时展示关键最佳实践
文档全面性考虑
除了首页示例外,建议对整个文档和教程进行全面审核,确保所有示例代码都遵循当前最佳实践,特别是关于数据预处理、模型配置和优化策略的部分。
对初学者的影响
当前示例虽然简单,但可能误导初学者养成不良习惯。改进后的示例应该在简洁性和教学性之间取得更好平衡,既展示核心功能,又引导用户采用正确实践。
通过以上改进,BoTorch的入门体验将更加友好和专业,帮助用户从一开始就建立正确的工作流程。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









