BoTorch入门示例代码优化指南
现状分析
BoTorch官方文档首页展示的"Get Started"示例代码存在几个需要改进的问题。这段代码虽然简洁,但未能体现当前BoTorch使用的最佳实践,可能会给初学者带来困惑或导致潜在问题。
主要问题点
-
标准化处理不当:示例中使用
standardize函数直接处理输出数据,这会导致模型预测结果保持在标准化后的空间,不利于结果解释。更推荐使用Standardize结果转换器。 -
输入标准化缺失:示例中没有展示输入数据的标准化处理,而BoTorch通常会建议用户对输入数据进行标准化以获得更好的模型性能。
-
数据类型问题:示例中使用单精度浮点数(torch.float32),而现代深度学习实践更推荐使用双精度浮点数(torch.float64)以获得更好的数值稳定性。
-
采集函数选择:示例中使用Upper Confidence Bound(UCB)作为采集函数,但实际上Log Expected Improvement(LogEI)系列采集函数在多数情况下是更优选择。
改进建议
1. 使用转换器代替直接标准化
推荐使用BoTorch提供的Standardize转换器来处理输出数据,这样可以自动处理训练和预测时的数据转换,保持预测结果在原始空间。
2. 添加输入标准化
应该添加Normalize输入转换器,特别是当输入特征具有不同尺度时,这能显著提高模型性能。
3. 使用双精度浮点数
将数据和模型参数统一使用torch.float64类型,避免数值精度问题导致的警告信息。
4. 更新采集函数
考虑使用qLogNoisyExpectedImprovement等更现代的采集函数,它们在实践中通常表现更好。
示例代码改进方向
改进后的示例代码应该:
- 明确定义输入输出转换器
- 使用双精度数据类型
- 选择更合适的采集函数
- 保持代码简洁性的同时展示关键最佳实践
文档全面性考虑
除了首页示例外,建议对整个文档和教程进行全面审核,确保所有示例代码都遵循当前最佳实践,特别是关于数据预处理、模型配置和优化策略的部分。
对初学者的影响
当前示例虽然简单,但可能误导初学者养成不良习惯。改进后的示例应该在简洁性和教学性之间取得更好平衡,既展示核心功能,又引导用户采用正确实践。
通过以上改进,BoTorch的入门体验将更加友好和专业,帮助用户从一开始就建立正确的工作流程。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C047
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00