Thorium阅读器中日语注音标注功能的技术解析
背景介绍
Thorium阅读器是一款开源的电子书阅读软件,在处理日语文本时遇到了注音标注功能的技术挑战。日语文本中常见的"振假名"(furigana)标注方式,在电子书中通常使用HTML5的<ruby>标签实现,这给文本选择和标注功能带来了特殊的技术需求。
技术问题分析
在日语文本处理中,<ruby>标签用于将汉字(kanji)与其发音假名(furigana)关联起来。Thorium阅读器在实现文本标注功能时,直接使用了Web API的element.textContent属性获取选中文本内容,导致汉字和假名混合显示,不符合用户期望的只标注汉字的需求。
解决方案探讨
1. 基础解决方案
对于简单的<ruby>结构,如<ruby>空<rt>そら</rt></ruby>,可以通过element.firstChild.textContent直接获取汉字部分。这种方法简单直接,适用于单字注音的情况。
2. 复杂场景处理
实际应用中会遇到更复杂的结构:
-
多字统一注音:如
<ruby>季節<rt>きせつ</rt></ruby>,虽然包含多个汉字,但注音是整体标注的,仍可使用firstChild.textContent获取。 -
分字注音:如
<ruby>季<rt>き</rt>節<rt>せつ</rt></ruby>,每个汉字单独标注,需要更复杂的处理方法。
3. 正则表达式方案
针对分字注音的情况,可以使用正则表达式移除所有<rt>标签及其内容:
element.innerHTML.replace(/<rt>.*?<\/rt>/g, '')
这种方法能有效提取纯汉字文本,但需要注意处理可能存在的嵌套结构或特殊情况。
实现建议
-
优先检测简单结构:先尝试使用
firstChild.textContent获取内容,若结果不符合预期再尝试复杂方法。 -
性能优化:对于大量文本处理,正则表达式可能影响性能,应考虑缓存处理结果。
-
边界情况处理:需要考虑
<ruby>标签嵌套、空标签等特殊情况。
总结
Thorium阅读器在处理日语注音文本标注时,需要特别考虑<ruby>标签的结构特性。通过组合使用DOM操作和正则表达式,可以有效地提取纯汉字文本,为用户提供更好的标注体验。这一解决方案不仅适用于Thorium,也可为其他处理多语言文本的阅读器提供参考。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00