Thorium阅读器中日语注音标注功能的技术解析
背景介绍
Thorium阅读器是一款开源的电子书阅读软件,在处理日语文本时遇到了注音标注功能的技术挑战。日语文本中常见的"振假名"(furigana)标注方式,在电子书中通常使用HTML5的<ruby>标签实现,这给文本选择和标注功能带来了特殊的技术需求。
技术问题分析
在日语文本处理中,<ruby>标签用于将汉字(kanji)与其发音假名(furigana)关联起来。Thorium阅读器在实现文本标注功能时,直接使用了Web API的element.textContent属性获取选中文本内容,导致汉字和假名混合显示,不符合用户期望的只标注汉字的需求。
解决方案探讨
1. 基础解决方案
对于简单的<ruby>结构,如<ruby>空<rt>そら</rt></ruby>,可以通过element.firstChild.textContent直接获取汉字部分。这种方法简单直接,适用于单字注音的情况。
2. 复杂场景处理
实际应用中会遇到更复杂的结构:
-
多字统一注音:如
<ruby>季節<rt>きせつ</rt></ruby>,虽然包含多个汉字,但注音是整体标注的,仍可使用firstChild.textContent获取。 -
分字注音:如
<ruby>季<rt>き</rt>節<rt>せつ</rt></ruby>,每个汉字单独标注,需要更复杂的处理方法。
3. 正则表达式方案
针对分字注音的情况,可以使用正则表达式移除所有<rt>标签及其内容:
element.innerHTML.replace(/<rt>.*?<\/rt>/g, '')
这种方法能有效提取纯汉字文本,但需要注意处理可能存在的嵌套结构或特殊情况。
实现建议
-
优先检测简单结构:先尝试使用
firstChild.textContent获取内容,若结果不符合预期再尝试复杂方法。 -
性能优化:对于大量文本处理,正则表达式可能影响性能,应考虑缓存处理结果。
-
边界情况处理:需要考虑
<ruby>标签嵌套、空标签等特殊情况。
总结
Thorium阅读器在处理日语注音文本标注时,需要特别考虑<ruby>标签的结构特性。通过组合使用DOM操作和正则表达式,可以有效地提取纯汉字文本,为用户提供更好的标注体验。这一解决方案不仅适用于Thorium,也可为其他处理多语言文本的阅读器提供参考。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00