KeePassXC浏览器扩展中Passkeys认证响应的非法调用问题分析
问题背景
在KeePassXC浏览器扩展的Passkeys功能实现中,当用户尝试调用认证响应对象(AuthenticatorAttestationResponse)的getPublicKey或getPublicKeyAlgorithm方法时,会遇到"非法调用"(Illegal Invocation)的错误。这个问题源于扩展对WebAuthn标准接口的实现方式存在缺陷。
技术原理
WebAuthn标准定义了AuthenticatorAttestationResponse接口,该接口包含几个关键方法:
- getAuthenticatorData(): 获取认证器数据
- getPublicKey(): 获取新凭证的DER格式SubjectPublicKeyInfo
- getPublicKeyAlgorithm(): 获取公钥算法标识符
- getTransports(): 获取支持的传输方式
在KeePassXC的实现中,通过原型继承的方式将这些方法附加到响应对象上,但未正确处理某些方法的调用情况。
问题根源
当前实现存在两个主要问题:
-
原型继承的副作用:通过Object.setPrototypeOf将响应对象原型设置为AuthenticatorAttestationResponse.prototype,导致所有标准方法都成为可调用状态,即使扩展并未实现这些方法。
-
方法未实现:虽然getPublicKey和getPublicKeyAlgorithm方法在原型链上可见,但KeePassXC并未实际提供这些方法的实现,导致调用时抛出非法调用异常。
解决方案
正确的修复方式应该是在创建响应对象时显式处理这些方法:
-
移除未实现的方法:通过将这些方法显式设置为undefined,可以避免非法调用错误。
-
仅保留实现的方法:明确只保留实际实现的getAuthenticatorData和getTransports方法。
-
保持标准兼容性:虽然移除了未实现的方法,但仍保持对象原型链,确保其他WebAuthn功能正常工作。
实现建议
修改后的createAttestationResponse函数应如下处理:
const createAttestationResponse = function(publicKey) {
const response = {
attestationObject: kpxcBase64ToArrayBuffer(publicKey.response.attestationObject),
clientDataJSON: kpxcBase64ToArrayBuffer(publicKey.response.clientDataJSON),
getAuthenticatorData: () => kpxcBase64ToArrayBuffer(publicKey.response?.authenticatorData),
getTransports: () => [ 'internal' ]
};
// 设置原型链但移除未实现的方法
const responseWithProto = Object.setPrototypeOf(response, AuthenticatorAttestationResponse.prototype);
responseWithProto.getPublicKey = undefined;
responseWithProto.getPublicKeyAlgorithm = undefined;
return responseWithProto;
};
对用户体验的影响
这个修复将带来以下改进:
-
更好的错误处理:用户代码可以安全地检查方法是否存在,而不会意外触发异常。
-
更符合预期行为:未实现的方法将明确返回undefined,而不是抛出意外错误。
-
保持向后兼容:现有依赖这些方法的代码可以安全地进行存在性检查。
总结
正确处理WebAuthn标准接口的实现细节对于密码管理器的可靠性至关重要。通过显式处理未实现的方法而非依赖原型继承,KeePassXC可以提供更稳定、更可预测的Passkeys功能体验。这种修复方式既解决了当前的非法调用问题,又为未来可能的完整接口实现预留了空间。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00