CogVideo模型LoRA微调中的NaN损失问题分析与解决
2025-05-20 11:46:06作者:卓艾滢Kingsley
问题背景
在使用CogVideo项目进行文本到视频(T2V)模型的LoRA微调过程中,部分开发者遇到了训练过程中出现NaN(非数值)损失值的问题。具体表现为训练初期损失值突然变为NaN,同时伴随梯度范数(grad_norm)也变为NaN的情况。这类问题在深度学习模型训练中并不罕见,但需要针对具体模型和场景进行分析。
问题现象
在CogVideo 5B模型的LoRA微调过程中,开发者观察到以下典型现象:
- 训练开始后不久(约23步后),损失值突然变为NaN
- 梯度范数同样显示为NaN
- 系统日志中出现"NaN or Inf found in input tensor"的警告信息
- 该问题在使用默认训练脚本(train_ddp_t2v.sh)和参数配置时出现
可能原因分析
1. 浮点精度问题
CogVideo这类大型生成模型对数值精度较为敏感。虽然开发者使用了BF16混合精度训练(这是官方推荐的配置),但仍需注意:
- 某些操作在低精度下可能产生数值不稳定
- 梯度累积过程中可能放大数值误差
2. 数据质量问题
经过深入排查,发现问题根源在于训练数据:
- 输入数据包含异常值(如NaN或Inf)
- 数据预处理不充分导致数值范围异常
- 视频帧数据格式或范围不符合模型预期
3. 学习率设置不当
对于5B参数量的模型:
- 初始学习率过高可能导致梯度爆炸
- LoRA适配器的学习率需要特别调整
4. 损失函数数值稳定性
视频生成任务的损失计算可能涉及:
- 多尺度特征匹配
- 时序一致性约束
- 复杂的正则化项
解决方案
数据质量检查与修复
-
数据清洗:
- 检查训练数据集中是否包含损坏的视频文件
- 验证所有视频帧的像素值是否在合理范围内(如[0,255]或[0,1])
- 移除或修复包含NaN/Inf值的数据样本
-
数据预处理规范化:
- 确保数据预处理流程与原始训练时一致
- 对输入数据进行标准化处理(如归一化到[-1,1]或[0,1])
- 检查数据增强操作是否引入异常值
训练配置优化
-
学习率调整:
- 尝试降低初始学习率
- 使用学习率预热策略
- 对LoRA参数和主干网络采用不同的学习率
-
梯度裁剪:
- 添加梯度裁剪防止梯度爆炸
- 设置合理的最大梯度范数阈值
-
数值稳定性增强:
- 检查模型中是否存在不稳定的数学操作(如除法、指数运算)
- 在关键计算处添加数值保护(如添加微小epsilon防止除零)
监控与调试
-
训练过程监控:
- 在训练初期增加验证频率
- 监控梯度统计量(均值、方差、最大值等)
- 记录各层激活值的分布情况
-
逐步排查法:
- 先在小型数据集上验证训练稳定性
- 逐步增加数据量和模型复杂度
- 使用梯度检查点技术减少内存压力
最佳实践建议
-
数据准备阶段:
- 实现数据质量检查脚本
- 建立标准化的数据预处理流水线
- 保留数据预处理中间结果以便调试
-
模型训练阶段:
- 从小规模实验开始验证配置
- 使用稳定的优化器(如AdamW)
- 实现自动异常检测和恢复机制
-
调试工具:
- 利用PyTorch的autograd异常检测功能
- 实现自定义的数值检查回调函数
- 在关键计算节点添加断言检查
总结
CogVideo等大型生成模型的微调过程中出现NaN损失通常是多方面因素共同作用的结果。通过系统性的数据检查、训练配置优化和严格的数值稳定性控制,可以有效解决这类问题。特别需要注意的是,对于视频生成任务,数据质量往往是最关键的因素,建立完善的数据质量保障机制可以显著提高训练成功率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178