NetworkX中Dorogovtsev-Goltsev-Mendes图生成函数的参数解析
2025-05-14 15:37:18作者:瞿蔚英Wynne
在复杂网络研究领域,Dorogovtsev-Goltsev-Mendes(DGM)图模型是一个重要的确定性增长网络模型。NetworkX作为Python中主流的复杂网络分析工具,提供了该模型的实现函数dorogovtsev_goltsev_mendes_graph()。本文将深入解析该函数的参数设计原理,帮助用户正确理解其生成逻辑。
参数n的语义差异
DGM模型原始论文使用时间步长t来描述图的演化过程,其中t=-1表示初始状态(三个节点组成的三角形)。然而NetworkX实现采用了不同的参数命名约定:
- 函数参数n表示"生成次数"(generation number)
- n=0对应原始论文中的t=-1(初始状态)
- n=1对应t=0(第一次演化)
- 以此类推
这种设计使得参数从0开始计数,更符合编程惯例。例如:
import networkx as nx
G0 = nx.dorogovtsev_goltsev_mendes_graph(0) # 初始三角形(3节点3边)
G1 = nx.dorogovtsev_goltsev_mendes_graph(1) # 第一次演化后(6节点9边)
节点与边数量的计算公式
根据参数n的实际含义,正确的计算公式应为:
- 节点总数 = 3 * (3**(n+1) + 1) / 2
- 边总数 = 3**(n+2)
验证示例:
# n=0: 3*(3^1 +1)/2=6, 3^2=9 → 实际为3节点3边(初始三角形)
# n=1: 3*(3^2 +1)/2=15, 3^3=27 → 实际为6节点9边
实现背后的设计考量
NetworkX的这种实现方式体现了几个重要设计原则:
- 零基索引:符合Python编程惯例,使n=0成为有意义的起点
- 演化步骤明确:n直接表示需要执行的演化次数
- 向后兼容:保持与近20年历史代码的兼容性
使用建议
对于研究者而言,需要注意:
- 当需要与论文中的t对应时,使用n = t + 1
- 初始状态(论文t=-1)对应n=0
- 节点增长规模符合指数规律,需谨慎选择n值以避免内存问题
理解这些细节有助于在复杂网络研究中准确使用该模型,特别是在需要与理论文献对比时,能够正确解释计算结果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248