OR-Tools路由求解器中维度与松弛变量的关键问题分析
2025-05-19 01:30:35作者:仰钰奇
引言
在使用OR-Tools路由求解器进行车辆路径优化时,合理设置维度(Dimension)和松弛变量(Slack)对于实现正确的容量约束至关重要。本文将深入探讨一个实际案例,分析在创建带有松弛变量的容量维度时,评估函数(evaluator)返回值对求解结果的影响。
问题背景
该案例涉及一个包含配送点和补给点的车辆路径问题,具有以下特点:
- 车辆具有不同的装载容量
- 车辆可以在补给点重新装载
- 为避免车辆频繁返回同一补给点,创建了多个补给点副本
- 使用维度来模拟车辆的装载状态
容量维度设计
在初始实现中,容量维度的设计遵循以下公式:
最终容量 = 初始容量 + 0 + 松弛变量
其中:
- 最大容量1(max1):车辆的最大容量
- 最大容量2(max2):所有车辆中的最大容量
- 初始容量范围:[0, max1]
- 最终容量范围:[0, max1]
- 松弛变量范围:[0, max2]
这种设计理论上允许车辆在补给点重新装载,并在配送点卸载货物。
测试案例与异常现象
考虑一个简单测试场景:
- 2辆车辆,每辆最多执行1次配送
- 2个配送点
- 1个补给点(有10个副本)
预期结果: 每辆车各服务1个配送点,并在途中访问补给点。
实际结果: 只有一辆车执行了配送任务,另一辆车直接返回。
评估函数调整的影响
当将补给点的评估函数返回值从0改为1后,系统产生了预期结果。这表明评估函数的返回值对求解行为有显著影响。
然而,这种调整在多维度场景下又引发了新问题。当车辆有多个容量维度且只需为其中一个维度补充时,返回值为1会导致其他维度的容量计算超出限制。
技术原理分析
-
维度与松弛变量的关系:
- 维度用于跟踪路径上的累积量(如载重量)
- 松弛变量允许在节点上调整累积量
- 评估函数定义了节点对累积量的影响
-
评估函数的作用:
- 返回0表示节点不影响累积量
- 返回正值表示节点增加累积量(如装载)
- 返回负值表示节点减少累积量(如卸载)
-
多维度协调问题:
- 当多个维度共享同一节点时,评估函数需要协调各维度的变化
- 固定返回值可能导致某些维度违反约束
解决方案建议
-
动态评估函数: 根据当前维度的需求动态调整返回值,而不是使用固定值。
-
维度解耦: 为需要补充的维度单独设置评估逻辑,避免影响其他维度。
-
约束细化: 添加额外的约束确保各维度的独立性,防止相互干扰。
-
松弛变量优化: 更精确地控制松弛变量的范围,适应不同维度的需求。
最佳实践
- 在设计多维容量约束时,应充分考虑各维度间的相互关系
- 评估函数的返回值应根据实际业务需求精心设计
- 对于复杂的补给逻辑,建议使用回调函数动态计算
- 通过充分的测试验证不同场景下的求解行为
结论
OR-Tools路由求解器中的维度机制非常强大但也需要谨慎使用。评估函数的设计和松弛变量的设置会显著影响求解结果。在实际应用中,开发者需要深入理解这些机制的原理,并通过系统化的测试验证解决方案的正确性。对于复杂的多维度补给问题,可能需要结合多种技术手段才能获得理想的优化结果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136