OR-Tools路由求解器中维度与松弛变量的关键问题分析
2025-05-19 20:26:36作者:仰钰奇
引言
在使用OR-Tools路由求解器进行车辆路径优化时,合理设置维度(Dimension)和松弛变量(Slack)对于实现正确的容量约束至关重要。本文将深入探讨一个实际案例,分析在创建带有松弛变量的容量维度时,评估函数(evaluator)返回值对求解结果的影响。
问题背景
该案例涉及一个包含配送点和补给点的车辆路径问题,具有以下特点:
- 车辆具有不同的装载容量
- 车辆可以在补给点重新装载
- 为避免车辆频繁返回同一补给点,创建了多个补给点副本
- 使用维度来模拟车辆的装载状态
容量维度设计
在初始实现中,容量维度的设计遵循以下公式:
最终容量 = 初始容量 + 0 + 松弛变量
其中:
- 最大容量1(max1):车辆的最大容量
- 最大容量2(max2):所有车辆中的最大容量
- 初始容量范围:[0, max1]
- 最终容量范围:[0, max1]
- 松弛变量范围:[0, max2]
这种设计理论上允许车辆在补给点重新装载,并在配送点卸载货物。
测试案例与异常现象
考虑一个简单测试场景:
- 2辆车辆,每辆最多执行1次配送
- 2个配送点
- 1个补给点(有10个副本)
预期结果: 每辆车各服务1个配送点,并在途中访问补给点。
实际结果: 只有一辆车执行了配送任务,另一辆车直接返回。
评估函数调整的影响
当将补给点的评估函数返回值从0改为1后,系统产生了预期结果。这表明评估函数的返回值对求解行为有显著影响。
然而,这种调整在多维度场景下又引发了新问题。当车辆有多个容量维度且只需为其中一个维度补充时,返回值为1会导致其他维度的容量计算超出限制。
技术原理分析
-
维度与松弛变量的关系:
- 维度用于跟踪路径上的累积量(如载重量)
- 松弛变量允许在节点上调整累积量
- 评估函数定义了节点对累积量的影响
-
评估函数的作用:
- 返回0表示节点不影响累积量
- 返回正值表示节点增加累积量(如装载)
- 返回负值表示节点减少累积量(如卸载)
-
多维度协调问题:
- 当多个维度共享同一节点时,评估函数需要协调各维度的变化
- 固定返回值可能导致某些维度违反约束
解决方案建议
-
动态评估函数: 根据当前维度的需求动态调整返回值,而不是使用固定值。
-
维度解耦: 为需要补充的维度单独设置评估逻辑,避免影响其他维度。
-
约束细化: 添加额外的约束确保各维度的独立性,防止相互干扰。
-
松弛变量优化: 更精确地控制松弛变量的范围,适应不同维度的需求。
最佳实践
- 在设计多维容量约束时,应充分考虑各维度间的相互关系
- 评估函数的返回值应根据实际业务需求精心设计
- 对于复杂的补给逻辑,建议使用回调函数动态计算
- 通过充分的测试验证不同场景下的求解行为
结论
OR-Tools路由求解器中的维度机制非常强大但也需要谨慎使用。评估函数的设计和松弛变量的设置会显著影响求解结果。在实际应用中,开发者需要深入理解这些机制的原理,并通过系统化的测试验证解决方案的正确性。对于复杂的多维度补给问题,可能需要结合多种技术手段才能获得理想的优化结果。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

暂无简介
Dart
526
116

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
986
583

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
94

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
43
0