PyMC v5.21.0版本发布:支持NumPy 2.0与Python 3.13的重要更新
PyMC是一个功能强大的Python概率编程框架,它允许用户构建复杂的概率模型并进行贝叶斯推断。作为开源项目,PyMC持续演进,为统计建模和机器学习社区提供先进的工具。最新发布的v5.21.0版本带来了几项重要更新,特别是对NumPy 2.0和Python 3.13的支持,以及一些关键的功能改进和错误修复。
核心更新:PyTensor升级与兼容性扩展
本次版本最显著的改进是对PyTensor库的升级,这使得PyMC现在能够支持NumPy 2.0和Python 3.13。这一变化对用户代码可能产生以下影响:
-
变量布尔检查的变化:现在直接使用
if variable:(等同于bool(variable))检查PyMC变量会引发异常。用户应当改用更明确的检查方式,如if variable is not None或其他适合上下文的方式。 -
未来兼容性保障:这一升级确保了PyMC能够在新版本的Python和NumPy环境中稳定运行,为用户提供了长期的技术保障。
移除废弃功能
v5.21.0版本中移除了已被标记为废弃的生成器数据支持。这一清理工作有助于:
- 简化代码库,减少维护负担
- 提高整体性能
- 鼓励用户使用更现代、更稳定的API
关键错误修复
本次发布包含了几项重要的错误修复:
-
链式CustomSymbolicDists问题:修复了在使用链式自定义符号分布时可能出现的问题,确保了复杂模型构建的可靠性。
-
JAX logp重用问题:修正了在使用JAX进行采样时,重用logp函数生成初始点可能导致的错误,提高了采样过程的稳定性。
功能改进与优化
除了错误修复,v5.21.0还引入了一些功能改进:
-
观测变量限制放宽:现在允许对已经观测的变量再次进行观测,这一变化提供了更大的灵活性,特别是在构建复杂模型时。
-
JAX性能优化:在通过JAX进行采样时,现在会重用已经JAX化的logp函数,减少了重复计算,提高了采样效率。
对用户的影响与建议
对于现有PyMC用户,升级到v5.21.0版本时需要注意:
- 检查代码中是否存在对PyMC变量的布尔检查,并按照新规范进行修改。
- 如果使用了已被移除的生成器数据功能,需要迁移到替代方案。
- 可以利用新的观测变量灵活性优化模型构建。
- 使用JAX后端的用户将体验到性能提升。
总结
PyMC v5.21.0是一个重要的维护版本,它不仅提供了对新版本Python和NumPy的支持,还通过错误修复和功能改进提升了框架的稳定性和可用性。这些变化体现了PyMC项目对长期可持续性和用户体验的承诺,为统计建模和概率编程社区提供了更加强大的工具。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C095
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00