Redisson中RMapCache高CPU利用率问题的分析与解决方案
2025-05-08 16:59:20作者:谭伦延
问题背景
在使用Redisson的RMapCache实现基于键的过期机制时,许多开发者遇到了Redis服务器CPU利用率接近100%的问题。这种情况在使用AWS ElastiCache等托管Redis服务时尤为明显,即使增加集群规模,CPU利用率仍然居高不下。
问题表现
典型的问题表现包括:
- Redis服务器CPU持续接近100%利用率
- 出现"Increase connection pool size"等错误提示
- 即使扩大集群规模,CPU压力依然存在
- 连接数异常增高(如达到3K以上)
根本原因分析
经过深入分析,这个问题主要由以下几个因素共同导致:
-
Redisson的过期机制实现:标准版RMapCache的过期处理是在客户端进行的,这会带来额外的CPU开销。
-
批量操作的影响:使用putAll()等批量操作方法时,当数据量较大时会显著增加Redis服务器的处理负担。
-
连接池配置不当:不合理的连接池配置可能导致连接数激增,进一步加重服务器负担。
-
多客户端竞争:多个微服务同时访问同一个RMapCache时,会加剧对Redis资源的竞争。
解决方案
1. 升级Redisson版本
建议至少升级到3.37.0版本,该版本修复了"CommandsQueue导致100% CPU使用率"的问题。
2. 优化配置参数
调整以下配置参数可以显著改善性能:
subscriptionConnectionMinimumIdleSize: 25
nettyThreads: 128
subscriptionConnectionPoolSize: 75
masterConnectionPoolSize: 100
minCleanUpDelay: 10
useScriptCache: true
其中:
minCleanUpDelay控制清理间隔,适当增大可降低CPU压力useScriptCache启用脚本缓存可减少重复脚本编译的开销
3. 优化数据操作方式
- 避免使用大容量的putAll()操作,改为分批写入
- 考虑使用异步API减少阻塞
- 合理设置TTL,避免过于频繁的过期处理
4. 考虑使用高级功能
对于高吞吐量场景,建议考虑:
-
RMapCacheV2(PRO版):
- 将过期处理移到Redis服务器端
- 据报告可降低约60%的CPU负载
- 可能需要减少集群节点数量
-
RMapCacheNative(需Redis 7.4+):
- 原生支持键过期
- 性能最优
- 目前AWS ElastiCache暂不支持
最佳实践建议
-
监控先行:持续监控CPU、连接数等关键指标,建立基线。
-
渐进式优化:每次只调整一个参数,观察效果后再进行下一步优化。
-
容量规划:根据实际负载合理规划Redis集群规模,避免过度配置。
-
架构评估:对于极高吞吐场景,考虑是否可以采用分区或其他数据架构。
通过以上措施的综合应用,可以有效解决RMapCache导致的高CPU利用率问题,使系统恢复稳定运行。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
299
2.65 K
Ascend Extension for PyTorch
Python
130
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
608
196
React Native鸿蒙化仓库
JavaScript
229
307
暂无简介
Dart
592
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
612
仓颉编译器源码及 cjdb 调试工具。
C++
122
511
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
181
67
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
457