Terraform Cloud 入门指南示例项目教程
2024-09-01 23:30:41作者:钟日瑜
1. 项目的目录结构及介绍
tfc-guide-example/
├── .github
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
├── main.tf
├── outputs.tf
├── variables.tf
└── versions.tf
- .github: 包含GitHub相关的配置文件。
- .gitignore: 指定Git版本控制系统忽略的文件和目录。
- LICENSE: 项目的许可证文件,本项目使用MPL-2.0许可证。
- README.md: 项目说明文档。
- main.tf: 主配置文件,定义了EC2实例的创建。
- outputs.tf: 输出配置文件,定义了输出变量。
- variables.tf: 变量定义文件,定义了输入变量。
- versions.tf: 版本配置文件,定义了Terraform和提供者的版本要求。
2. 项目的启动文件介绍
main.tf 是项目的启动文件,它包含了创建EC2实例的配置。以下是 main.tf 的部分内容:
provider "aws" {
region = var.region
}
resource "aws_instance" "example" {
ami = var.ami
instance_type = var.instance_type
tags = {
Name = "terraform-example"
}
}
- provider "aws": 定义了AWS提供者,并指定了区域。
- resource "aws_instance" "example": 定义了一个EC2实例,包括AMI、实例类型和标签。
3. 项目的配置文件介绍
variables.tf
variables.tf 文件定义了输入变量:
variable "region" {
description = "AWS region"
default = "us-west-2"
}
variable "ami" {
description = "AMI for the EC2 instance"
default = "ami-830c94e3"
}
variable "instance_type" {
description = "Type of EC2 instance"
default = "t2.micro"
}
- variable "region": 定义了AWS区域。
- variable "ami": 定义了EC2实例的AMI。
- variable "instance_type": 定义了EC2实例的类型。
outputs.tf
outputs.tf 文件定义了输出变量:
output "public_ip" {
description = "Public IP address of the EC2 instance"
value = aws_instance.example.public_ip
}
- output "public_ip": 定义了EC2实例的公共IP地址作为输出。
versions.tf
versions.tf 文件定义了Terraform和提供者的版本要求:
terraform {
required_version = ">= 0.12"
}
provider "aws" {
version = "~> 2.0"
}
- terraform: 定义了Terraform的最低版本要求。
- provider "aws": 定义了AWS提供者的版本要求。
通过以上介绍,您可以更好地理解和使用 tfc-guide-example 项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
487
3.61 K
Ascend Extension for PyTorch
Python
298
332
暂无简介
Dart
738
177
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
270
113
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
865
467
仓颉编译器源码及 cjdb 调试工具。
C++
149
880
React Native鸿蒙化仓库
JavaScript
296
343
Dora SSR 是一款跨平台的游戏引擎,提供前沿或是具有探索性的游戏开发功能。它内置了Web IDE,提供了可以轻轻松松通过浏览器访问的快捷游戏开发环境,特别适合于在新兴市场如国产游戏掌机和其它移动电子设备上直接进行游戏开发和编程学习。
C++
52
7
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20