《VATIC视频标注工具:安装与使用指南》
在现代计算机视觉研究中,视频标注工具是不可或缺的资源。它们帮助我们构建大量、低成本的视频数据集,进而训练出更为精确的机器学习模型。VATIC(Video Annotation Tool for Irvine, California)就是这样一款优秀的在线视频标注工具,它通过众包的方式将工作分散到亚马逊的Mechanical Turk平台。以下是关于如何安装和使用VATIC的详细指南。
安装前准备
在开始安装VATIC之前,请确保您的系统满足以下要求:
- 操作系统:VATIC已在Ubuntu系统上进行了测试,但理论上应适用于任何操作系统。
- 硬件要求:确保您的计算机有足够的处理能力和内存来处理视频标注任务。
- 必备软件:Apache 2.2 HTTP服务器和MySQL数据库是安装VATIC所必需的。
安装步骤
-
下载VATIC
从以下地址下载VATIC安装脚本:
$ wget http://mit.edu/vondrick/vatic/vatic-install.sh $ chmod +x vatic-install.sh $ ./vatic-install.sh $ cd vatic -
配置HTTP服务器
打开Apache配置文件(在Ubuntu系统中为
/etc/apache2/sites-enabled/000-default),并根据您的域名和VATIC的路径进行相应的配置。 -
配置数据库
创建一个专门用于VATIC的数据库:
$ mysql -u root mysql> create database vatic; -
初始化VATIC
在VATIC目录中,复制
config.py-example到config.py,并按照您的需求配置其中的变量。然后,初始化数据库:$ turkic setup --database -
重启Apache服务器
在配置更改后,重启Apache以使更改生效:
$ sudo apache2ctl graceful
基本使用方法
-
提取视频帧
VATIC要求视频被提取为JPEG格式的帧。您可以使用以下命令自动执行此操作:
$ mkdir /path/to/output/directory $ turkic extract /path/to/video.mp4 /path/to/output/directory -
加载视频
在提取帧后,您可以使用以下命令将视频加载到VATIC中进行标注:
$ turkic load identifier /path/to/output/directory Label1 Label2 LabelN其中,
identifier是您将用来引用此视频的唯一字符串,/path/to/output/directory是包含帧的目录,LabelX是您希望标注的类别标签。 -
标注视频
在加载视频后,您可以按照提示进行标注。VATIC会将视频分成几个小段,以便标注。
结论
通过上述步骤,您应该能够成功安装并开始使用VATIC。如果您在安装或使用过程中遇到任何问题,可以查阅VATIC的官方文档或寻求社区的帮助。实践是学习的关键,因此我们鼓励您尽快开始标注自己的视频数据集。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00