《VATIC视频标注工具:安装与使用指南》
在现代计算机视觉研究中,视频标注工具是不可或缺的资源。它们帮助我们构建大量、低成本的视频数据集,进而训练出更为精确的机器学习模型。VATIC(Video Annotation Tool for Irvine, California)就是这样一款优秀的在线视频标注工具,它通过众包的方式将工作分散到亚马逊的Mechanical Turk平台。以下是关于如何安装和使用VATIC的详细指南。
安装前准备
在开始安装VATIC之前,请确保您的系统满足以下要求:
- 操作系统:VATIC已在Ubuntu系统上进行了测试,但理论上应适用于任何操作系统。
- 硬件要求:确保您的计算机有足够的处理能力和内存来处理视频标注任务。
- 必备软件:Apache 2.2 HTTP服务器和MySQL数据库是安装VATIC所必需的。
安装步骤
-
下载VATIC
从以下地址下载VATIC安装脚本:
$ wget http://mit.edu/vondrick/vatic/vatic-install.sh $ chmod +x vatic-install.sh $ ./vatic-install.sh $ cd vatic -
配置HTTP服务器
打开Apache配置文件(在Ubuntu系统中为
/etc/apache2/sites-enabled/000-default),并根据您的域名和VATIC的路径进行相应的配置。 -
配置数据库
创建一个专门用于VATIC的数据库:
$ mysql -u root mysql> create database vatic; -
初始化VATIC
在VATIC目录中,复制
config.py-example到config.py,并按照您的需求配置其中的变量。然后,初始化数据库:$ turkic setup --database -
重启Apache服务器
在配置更改后,重启Apache以使更改生效:
$ sudo apache2ctl graceful
基本使用方法
-
提取视频帧
VATIC要求视频被提取为JPEG格式的帧。您可以使用以下命令自动执行此操作:
$ mkdir /path/to/output/directory $ turkic extract /path/to/video.mp4 /path/to/output/directory -
加载视频
在提取帧后,您可以使用以下命令将视频加载到VATIC中进行标注:
$ turkic load identifier /path/to/output/directory Label1 Label2 LabelN其中,
identifier是您将用来引用此视频的唯一字符串,/path/to/output/directory是包含帧的目录,LabelX是您希望标注的类别标签。 -
标注视频
在加载视频后,您可以按照提示进行标注。VATIC会将视频分成几个小段,以便标注。
结论
通过上述步骤,您应该能够成功安装并开始使用VATIC。如果您在安装或使用过程中遇到任何问题,可以查阅VATIC的官方文档或寻求社区的帮助。实践是学习的关键,因此我们鼓励您尽快开始标注自己的视频数据集。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00