llm.c项目中CUDNN执行计划构建失败问题分析与解决
2025-05-07 05:53:45作者:昌雅子Ethen
问题背景
在使用llm.c项目进行GPT-2模型训练时,用户遇到了CUDNN相关的错误。具体表现为当启用CUDNN加速时,系统抛出"CUDNN ERROR"并提示"No execution plans built successfully",导致训练无法正常进行。该问题发生在单块RTX 4090显卡上,运行环境为WSL2。
错误现象分析
错误信息显示在cudnn_att.cpp文件的第141行出现了问题,核心错误是"没有成功构建任何执行计划"。这表明CUDNN库在尝试为特定的神经网络操作(特别是注意力机制部分)寻找最优的计算策略时失败了。
可能的原因
- 环境配置问题:WSL2环境下CUDA和CUDNN的兼容性问题
- 硬件限制:RTX 4090显卡对某些CUDNN操作的支持问题
- 参数设置不当:训练参数如batch size、序列长度等与CUDNN优化器的兼容性问题
- 版本冲突:CUDNN版本与项目代码或CUDA版本的兼容性问题
解决方案
-
禁用CUDNN:作为临时解决方案,可以禁用CUDNN加速,虽然会导致MFU(模型浮点运算利用率)降低,但可以保证训练正常进行。
-
启用CUDNN调试信息:
- 设置环境变量CUDNN_LOGINFO=1来获取更详细的CUDNN调试信息
- 这有助于定位具体是哪个操作导致了执行计划构建失败
-
检查项目版本:
- 确保使用的是项目最新代码,因为MFU计算逻辑近期有更新
- 新版本对不同GPU的支持更完善,包括RTX 4090
-
验证数据集:
- 虽然与CUDNN错误无直接关联,但Hellaswag评估数据集缺失的警告也应处理
- 运行指定的Python脚本生成所需的二进制评估文件
性能优化建议
-
MFU理解:在RTX 4090上达到70%的MFU已经是相当不错的表现,因为GPU还需要处理除bf16矩阵乘法外的其他任务。
-
参数调整:
- 可以尝试调整batch size和序列长度
- 测试不同的梯度累积步数设置
-
内存管理:
- 监控GPU内存使用情况
- 确保有足够的内存用于CUDNN优化器的执行计划缓存
总结
在llm.c项目中使用CUDNN加速时遇到执行计划构建失败的问题,通常与环境配置或参数设置有关。通过禁用CUDNN或获取更详细的调试信息可以解决或诊断问题。同时,保持项目代码最新并正确设置评估数据集,能够获得更稳定和高效的训练体验。对于RTX 4090用户,70%左右的MFU已经是相当不错的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
436
3.32 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
701
379
Ascend Extension for PyTorch
Python
246
283
暂无简介
Dart
699
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
273
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
267
124
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871