Apache Quickstep 技术文档
2024-12-23 20:45:34作者:傅爽业Veleda
1. 安装指南
1.1 克隆代码
首先,从 Apache 的代码库中克隆 Quickstep 代码:
git clone https://git-wip-us.apache.org/repos/asf/incubator-quickstep.git quickstep
1.2 初始化依赖
进入代码目录,并初始化子模块依赖:
cd quickstep
git submodule init
1.3 检出依赖
检出所有依赖项并应用必要的补丁:
git submodule update
cd third_party && ./download_and_patch_prerequisites.sh && cd ..
1.4 编译
进入构建目录,创建 Makefile 并编译:
cd build
cmake -D CMAKE_BUILD_TYPE=Release ..
make -j4
注:-j4 参数可根据你的 CPU 核心数进行调整。
2. 使用说明
启动 Quickstep CLI Shell 并初始化数据库:
./quickstep_cli_shell --initialize_db=true
此时,你可以开始执行 SQL 查询。要退出 Quickstep,可以输入:
quit;
初始化后,数据库文件将存储在 qsstor 目录下。下次启动时,可以省略 --initialize_db 参数,直接使用:
./quickstep_cli_shell
3. 项目API使用文档
Quickstep 目前支持的 SQL 表面较小,但会随着时间的推移而增长。目前支持的包括基本的 CREATE TABLE 和 SELECT 语句。支持的数据类型包括:INTEGER、FLOAT、DOUBLE、VARCHAR、CHAR、DATE 和 DATETIME。Quickstep 尚不支持 NULL 值或键。
以下是一些示例 SQL 语句:
3.1 创建表
CREATE TABLE Weather (cid INTEGER, recordDate DATE, highTemperature FLOAT, lowTemperature FLOAT);
CREATE TABLE City (cid INTEGER, name VARCHAR(80), state CHAR(2));
3.2 插入数据
INSERT INTO City VALUES (1, 'Madison', 'WI');
INSERT INTO City VALUES (2, 'Palo Alto', 'CA');
INSERT INTO Weather VALUES (1, '2015-11-1', 50, 30);
INSERT INTO Weather VALUES (1, '2015-11-2', 51, 32);
INSERT INTO Weather VALUES (2, '2015-11-1', 60, 50);
3.3 查询
3.3.1 查询所有加州的天气记录
SELECT * FROM Weather W, City C WHERE C.cid = W.cid AND C.state = 'CA';
3.3.2 查询每个城市的最高和最低温度
SELECT cid, MIN(lowTemperature), MAX(highTemperature) FROM Weather GROUP BY cid;
3.3.3 使用嵌套查询查询每个城市的最高和最低温度,并打印城市名称
SELECT * FROM City C, (SELECT cid, MIN(lowTemperature), MAX(highTemperature) FROM Weather GROUP BY cid) AS T WHERE C.cid = T.cid;
3.4 数据导入
Quickstep 还支持 COPY TABLE 命令。以下是一个示例:
首先,在一个单独的 shell 文件中创建数据文件:
echo "3|2015-11-3|49|29" > /tmp/tmp.tbl
echo "3|2015-11-4|48|28" >> /tmp/tmp.tbl
echo "3|2015-11-5|47|27" >> /tmp/tmp.tbl
然后,在 Quickstep shell 中加载数据:
COPY Weather FROM '/tmp/tmp.tbl' WITH (DELIMITER '|');
现在,Weather 表中已加载更多数据,可以再次执行上述 SQL 查询。
4. 安装方式
请参考以下文档以获取更多关于构建和开发的信息:
Quickstep 使用 Apache License, Version 2.0 许可。有关完整许可文本,请见 LICENSE。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136