Google Cloud Foundation Fabric项目中资源层级管理的实践指南
概述
在Google Cloud Foundation Fabric(简称FAST)框架中,资源层级管理是一个关键环节。本文将深入探讨如何在该框架下实现团队与环境的资源隔离,特别是解决1-resman和3-project-factory阶段在资源层级管理上的兼容性问题。
资源层级管理的基本概念
FAST框架通过模块化设计来管理Google Cloud资源。其中1-resman阶段负责基础资源管理,3-project-factory阶段则专注于项目创建。理想情况下,开发者希望实现以下资源结构:
teams
- platform
- dev
- telemetry-dev
- prod
- telemetry-prod
- zk
- dev
- zk-validator-dev
- prod
- zk-validator-prod
技术挑战分析
1. 团队文件夹功能缺失
虽然文档提到1-resman阶段支持teams功能,但实际变量文件中并未实现这一特性。这导致开发者无法直接创建团队层级的文件夹结构。
2. 跨环境权限问题
3-project-factory阶段为每个环境创建单独的服务账号(如dev环境使用<prefix>-dev-resman-pf-0@<prefix>-iac-core-0.iam.gserviceaccount.com),但这些账号默认缺乏创建文件夹的权限,导致环境间资源隔离实现困难。
解决方案
主服务账号模式
最新版本的FAST引入了"main"项目工厂服务账号,这一账号可以跨环境管理资源层级。这一改进解决了环境间资源隔离的权限问题。
实现步骤
-
权限配置:为主服务账号授予对顶级文件夹的适当权限,确保其能够创建和管理子文件夹结构。
-
环境标记:在项目工厂层级结构中,通过标签绑定(tag bindings)来区分dev和prod环境。
-
层级设计:采用以下模式构建资源结构:
- 顶层为团队文件夹
- 每个团队文件夹下包含环境子文件夹(dev/prod)
- 环境文件夹下创建具体项目
最佳实践建议
-
权限管理:确保主服务账号拥有足够的权限来创建和管理整个资源层级结构。
-
环境隔离:利用标签系统清晰地标记不同环境,便于后续管理和审计。
-
渐进式实施:先在小规模测试环境中验证资源层级设计,确认无误后再扩展到生产环境。
-
文档记录:详细记录资源层级结构和权限配置,便于团队协作和后续维护。
总结
通过合理配置主服务账号和利用标签系统,开发者可以在FAST框架中实现复杂的团队和环境资源隔离。这一方案不仅解决了原始问题,还为大规模云资源管理提供了可扩展的模式。随着FAST框架的持续演进,建议开发者关注官方文档更新,及时了解新的最佳实践和功能增强。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C084
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00