Pandas十分钟快速入门指南
2025-05-31 07:49:20作者:裴锟轩Denise
作为Python生态中最强大的数据分析工具,Pandas为处理结构化数据提供了高效便捷的解决方案。本文将带您快速了解Pandas的核心功能,帮助数据分析新手快速上手这一强大工具。
环境准备
在开始之前,我们需要导入必要的库:
import numpy as np
import pandas as pd
数据结构创建
Pandas提供了两种主要数据结构:
Series - 一维带标签数组
s = pd.Series([1, 3, 5, np.nan, 6, 8])
DataFrame - 二维表格型数据结构
创建DataFrame有多种方式:
- 从NumPy数组创建,指定索引和列名:
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
- 从字典创建,自动处理不同类型数据:
df2 = pd.DataFrame({
'A': 1.0,
'B': pd.Timestamp('20130102'),
'C': pd.Series(1, index=list(range(4)),
'D': np.array([3]*4),
'E': pd.Categorical(["test", "train", "test", "train"]),
'F': 'foo'
})
数据查看与操作
查看数据
- 查看头部/尾部数据:
df.head() # 默认显示前5行
df.tail(3) # 显示最后3行
- 查看索引和列名:
df.index
df.columns
数据统计
快速获取描述性统计:
df.describe()
数据转置
df.T
数据选择与索引
Pandas提供了多种数据选择方式:
列选择
df['A'] # 选择单列
df[['A', 'B']] # 选择多列
行选择
df[0:3] # 选择前3行
df['20130102':'20130104'] # 按标签范围选择
标签定位
df.loc[dates[0]] # 选择单行
df.loc[:, ['A', 'B']] # 选择多列
df.loc['20130102':'20130104', ['A', 'B']] # 行列同时选择
位置定位
df.iloc[3] # 第4行
df.iloc[3:5, 0:2] # 行切片和列切片
df.iloc[[1,2,4], [0,2]] # 不连续选择
布尔索引
df[df.A > 0] # 条件筛选
df[df > 0] # 值筛选
df[df['E'].isin(['two', 'four'])] # 包含筛选
数据处理
缺失值处理
Pandas使用np.nan
表示缺失值:
df1.dropna(how='any') # 删除含缺失值的行
df1.fillna(value=5) # 填充缺失值
pd.isna(df1) # 检测缺失值
数据运算
df.mean() # 列平均值
df.mean(1) # 行平均值
df.apply(np.cumsum) # 应用函数
数据合并与分组
数据合并
pd.concat([df1, df2]) # 简单拼接
pd.merge(left, right, on='key') # SQL风格合并
数据分组
df.groupby('A').sum() # 单列分组
df.groupby(['A', 'B']).sum() # 多列分组
时间序列处理
Pandas提供了强大的时间序列处理能力:
ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
ts.resample('5Min').sum() # 重采样
ts.tz_localize('UTC').tz_convert('US/Eastern') # 时区转换
数据可视化
Pandas内置了基于Matplotlib的简单绘图功能:
ts.plot() # 绘制折线图
df.plot() # DataFrame多列绘图
数据输入输出
Pandas支持多种数据格式的读写:
# CSV
df.to_csv('foo.csv')
pd.read_csv('foo.csv')
# Excel
df.to_excel('foo.xlsx')
pd.read_excel('foo.xlsx')
# HDF5
df.to_hdf('foo.h5', 'df')
pd.read_hdf('foo.h5', 'df')
总结
本文快速介绍了Pandas的核心功能,包括数据结构创建、数据选择、数据处理、合并分组以及可视化等。掌握这些基础操作后,您已经可以开始使用Pandas进行基本的数据分析工作了。对于更复杂的需求,Pandas还提供了更多高级功能等待您去探索。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58