Motion-Matching开源项目下载与安装教程
2024-12-04 22:50:07作者:韦蓉瑛
1. 项目介绍
Motion-Matching 是一个开源项目,它提供了学习运动匹配(Learned Motion Matching)的示例实现和源代码。这个项目是为了配合文章 "Code vs Data Driven Displacement" 而创建的。它包含了运动匹配的核心逻辑和神经网络训练脚本,用户可以通过该项目来了解和学习运动匹配算法的实现和应用。
2. 项目下载位置
项目托管在 GitHub 上,下载位置为:https://github.com/orangeduck/Motion-Matching.git
3. 项目安装环境配置
3.1 环境要求
在安装该项目之前,需要确保系统中已经安装了以下依赖:
- raylib
- raygui
- emscripten(如果是编译Web版本)
以下是环境配置的步骤及图片示例:
首先,安装 raylib 和 raygui。这通常涉及到从源代码编译这些库。以下是编译 raylib 的示例步骤:
git clone https://github.com/raysan5/raylib.git
cd raylib
mkdir build
cd build
cmake ..
make

3.2 安装 emscripten
如果是编译 Web 版本,还需要安装 emscripten。以下是安装 emscripten 的示例步骤:
# 下载并解压 emscripten SDK
wget https://s3.amazonaws.com/mozilla-games/emscripten/releases/emsdk-<VERSION>.tar.gz
tar -xzf emsdk-<VERSION>.tar.gz
# 进入 emsdk 目录并安装
cd emsdk
./emsdk install <VERSION>
./emsdk activate <VERSION>
source ./emsdk_env.sh

4. 项目安装方式
克隆项目到本地:
git clone https://github.com/orangeduck/Motion-Matching.git
cd Motion-Matching
编译项目:
如果是编译桌面版本,使用 Makefile:
make
如果是编译 Web 版本,使用以下命令:
make PLATFORM=PLATFORM_WEB
5. 项目处理脚本
项目中的处理脚本主要包括训练神经网络和生成动画数据库的脚本。以下是运行这些脚本的示例:
训练解压器网络:
python train_decompressor.py
训练步进器和投影器网络:
python train_stepper.py
python train_projector.py
以上是 Motion-Matching 开源项目的下载与安装教程。按照上述步骤,您应该能够成功地在本地搭建该项目,并开始学习和使用运动匹配算法。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
289
2.6 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
226
305
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
605
181
暂无简介
Dart
576
127
Ascend Extension for PyTorch
Python
115
147
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
609
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
450
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
76
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
154
58