Motion-Matching开源项目下载与安装教程
2024-12-04 01:09:05作者:韦蓉瑛
1. 项目介绍
Motion-Matching 是一个开源项目,它提供了学习运动匹配(Learned Motion Matching)的示例实现和源代码。这个项目是为了配合文章 "Code vs Data Driven Displacement" 而创建的。它包含了运动匹配的核心逻辑和神经网络训练脚本,用户可以通过该项目来了解和学习运动匹配算法的实现和应用。
2. 项目下载位置
项目托管在 GitHub 上,下载位置为:https://github.com/orangeduck/Motion-Matching.git
3. 项目安装环境配置
3.1 环境要求
在安装该项目之前,需要确保系统中已经安装了以下依赖:
- raylib
- raygui
- emscripten(如果是编译Web版本)
以下是环境配置的步骤及图片示例:
首先,安装 raylib 和 raygui。这通常涉及到从源代码编译这些库。以下是编译 raylib 的示例步骤:
git clone https://github.com/raysan5/raylib.git
cd raylib
mkdir build
cd build
cmake ..
make

3.2 安装 emscripten
如果是编译 Web 版本,还需要安装 emscripten。以下是安装 emscripten 的示例步骤:
# 下载并解压 emscripten SDK
wget https://s3.amazonaws.com/mozilla-games/emscripten/releases/emsdk-<VERSION>.tar.gz
tar -xzf emsdk-<VERSION>.tar.gz
# 进入 emsdk 目录并安装
cd emsdk
./emsdk install <VERSION>
./emsdk activate <VERSION>
source ./emsdk_env.sh

4. 项目安装方式
克隆项目到本地:
git clone https://github.com/orangeduck/Motion-Matching.git
cd Motion-Matching
编译项目:
如果是编译桌面版本,使用 Makefile:
make
如果是编译 Web 版本,使用以下命令:
make PLATFORM=PLATFORM_WEB
5. 项目处理脚本
项目中的处理脚本主要包括训练神经网络和生成动画数据库的脚本。以下是运行这些脚本的示例:
训练解压器网络:
python train_decompressor.py
训练步进器和投影器网络:
python train_stepper.py
python train_projector.py
以上是 Motion-Matching 开源项目的下载与安装教程。按照上述步骤,您应该能够成功地在本地搭建该项目,并开始学习和使用运动匹配算法。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
199
219
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.74 K