首页
/ GLAMR:全球遮挡感知人体网格恢复利器

GLAMR:全球遮挡感知人体网格恢复利器

2024-05-20 09:49:43作者:傅爽业Veleda

GLAMR:全球遮挡感知人体网格恢复利器

GLAMR

GLAMR是一个由PyTorch实现的创新性开源项目,源自NVIDIA NVlabs的研究论文——"GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Cameras",并在CVPR 2022上以口头报告形式发布。该项目旨在解决人体运动捕捉中的全局遮挡问题,并在动态相机环境下提供精确的人体网格恢复。

项目概述

GLAMR的核心是其全局遮挡感知算法,能够从单一RGB视频中重建出准确且连贯的人体运动,即使在复杂的场景和动态背景中也能表现出色。系统工作流程如下:

GLAMR:全球遮挡感知人体网格恢复利器

技术解析

GLAMR的关键在于联合使用了运动内插器(Motion Infiller)轨迹预测器(Trajectory Predictor)。前者处理局部运动丢失,后者则负责预测人物的未来轨迹,两者结合能够有效解决遮挡带来的信息缺失问题。此外,它还支持多人体视频处理,确保在多人场景下的性能表现。

应用场景

  1. 动态视频分析: 适用于体育赛事、街头监控等场景,实时跟踪并重建运动员或行人动作。
  2. 虚拟现实与游戏: 提供更为真实的角色动画,提升用户体验。
  3. 电影制作: 实时人体动作捕捉,提高特效制作效率。
  4. 健康医疗: 远程监测患者的运动状态,辅助康复治疗。

独特优势

  1. 全局遮挡处理: 能够识别并处理全局遮挡导致的信息损失。
  2. 动态相机兼容: 即使面对移动的摄像机,也能稳定地进行人体网格恢复。
  3. 易用性: 提供详尽的示例代码和预训练模型,方便快速上手。
  4. 扩展性: 可与其他骨架估计技术结合,进一步优化结果。

开始使用

想要尝试GLAMR?只需遵循提供的安装指南,安装必要的依赖项,然后通过简单的命令行参数运行演示脚本,即可体验到动态和静态视频下的人体网格重建效果。

立即加入GLAMR,探索更多可能,为您的技术项目带来革命性的提升吧!

# 论文引用
如果您在研究中使用了GLAMR,请引用以下文献:

@inproceedings{yuan2022glamr, title={GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Cameras}, author={Yuan, Ye and Iqbal, Umar and Molchanov, Pavlo and Kitani, Kris and Kautz, Jan}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2022} }


此项目的完整源码和详细文档可直接访问[NVIDIA NVlabs GLAMR](https://nvlabs.github.io/GLAMR)获取。开始你的GLAMR之旅,共同推动人体追踪技术的边界!



项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cjmarkdown4cj
一个markdown解析和展示的库
Cangjie
10
0