GLAMR:全球遮挡感知人体网格恢复利器
GLAMR:全球遮挡感知人体网格恢复利器

GLAMR是一个由PyTorch实现的创新性开源项目,源自NVIDIA NVlabs的研究论文——"GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Cameras",并在CVPR 2022上以口头报告形式发布。该项目旨在解决人体运动捕捉中的全局遮挡问题,并在动态相机环境下提供精确的人体网格恢复。
项目概述
GLAMR的核心是其全局遮挡感知算法,能够从单一RGB视频中重建出准确且连贯的人体运动,即使在复杂的场景和动态背景中也能表现出色。系统工作流程如下:
技术解析
GLAMR的关键在于联合使用了运动内插器(Motion Infiller) 和轨迹预测器(Trajectory Predictor)。前者处理局部运动丢失,后者则负责预测人物的未来轨迹,两者结合能够有效解决遮挡带来的信息缺失问题。此外,它还支持多人体视频处理,确保在多人场景下的性能表现。
应用场景
- 动态视频分析: 适用于体育赛事、街头监控等场景,实时跟踪并重建运动员或行人动作。
- 虚拟现实与游戏: 提供更为真实的角色动画,提升用户体验。
- 电影制作: 实时人体动作捕捉,提高特效制作效率。
- 健康医疗: 远程监测患者的运动状态,辅助康复治疗。
独特优势
- 全局遮挡处理: 能够识别并处理全局遮挡导致的信息损失。
- 动态相机兼容: 即使面对移动的摄像机,也能稳定地进行人体网格恢复。
- 易用性: 提供详尽的示例代码和预训练模型,方便快速上手。
- 扩展性: 可与其他骨架估计技术结合,进一步优化结果。
开始使用
想要尝试GLAMR?只需遵循提供的安装指南,安装必要的依赖项,然后通过简单的命令行参数运行演示脚本,即可体验到动态和静态视频下的人体网格重建效果。
立即加入GLAMR,探索更多可能,为您的技术项目带来革命性的提升吧!
# 论文引用
如果您在研究中使用了GLAMR,请引用以下文献:
@inproceedings{yuan2022glamr, title={GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Cameras}, author={Yuan, Ye and Iqbal, Umar and Molchanov, Pavlo and Kitani, Kris and Kautz, Jan}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2022} }
此项目的完整源码和详细文档可直接访问[NVIDIA NVlabs GLAMR](https://nvlabs.github.io/GLAMR)获取。开始你的GLAMR之旅,共同推动人体追踪技术的边界!
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00