GLAMR:全球遮挡感知人体网格恢复利器
GLAMR:全球遮挡感知人体网格恢复利器
GLAMR是一个由PyTorch实现的创新性开源项目,源自NVIDIA NVlabs的研究论文——"GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Cameras",并在CVPR 2022上以口头报告形式发布。该项目旨在解决人体运动捕捉中的全局遮挡问题,并在动态相机环境下提供精确的人体网格恢复。
项目概述
GLAMR的核心是其全局遮挡感知算法,能够从单一RGB视频中重建出准确且连贯的人体运动,即使在复杂的场景和动态背景中也能表现出色。系统工作流程如下:

技术解析
GLAMR的关键在于联合使用了运动内插器(Motion Infiller) 和轨迹预测器(Trajectory Predictor)。前者处理局部运动丢失,后者则负责预测人物的未来轨迹,两者结合能够有效解决遮挡带来的信息缺失问题。此外,它还支持多人体视频处理,确保在多人场景下的性能表现。
应用场景
- 动态视频分析: 适用于体育赛事、街头监控等场景,实时跟踪并重建运动员或行人动作。
- 虚拟现实与游戏: 提供更为真实的角色动画,提升用户体验。
- 电影制作: 实时人体动作捕捉,提高特效制作效率。
- 健康医疗: 远程监测患者的运动状态,辅助康复治疗。
独特优势
- 全局遮挡处理: 能够识别并处理全局遮挡导致的信息损失。
- 动态相机兼容: 即使面对移动的摄像机,也能稳定地进行人体网格恢复。
- 易用性: 提供详尽的示例代码和预训练模型,方便快速上手。
- 扩展性: 可与其他骨架估计技术结合,进一步优化结果。
开始使用
想要尝试GLAMR?只需遵循提供的安装指南,安装必要的依赖项,然后通过简单的命令行参数运行演示脚本,即可体验到动态和静态视频下的人体网格重建效果。
立即加入GLAMR,探索更多可能,为您的技术项目带来革命性的提升吧!
# 论文引用
如果您在研究中使用了GLAMR,请引用以下文献:
@inproceedings{yuan2022glamr, title={GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Cameras}, author={Yuan, Ye and Iqbal, Umar and Molchanov, Pavlo and Kitani, Kris and Kautz, Jan}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2022} }
此项目的完整源码和详细文档可直接访问[NVIDIA NVlabs GLAMR](https://nvlabs.github.io/GLAMR)获取。开始你的GLAMR之旅,共同推动人体追踪技术的边界!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









