TorchTitan项目中大规模模型训练中的NaN问题分析与解决
引言
在分布式深度学习训练中,特别是在使用大规模模型如405B参数量的模型时,训练初期出现NaN(非数值)是一个常见但棘手的问题。本文将深入分析在TorchTitan项目中使用FSDP(完全分片数据并行)和TP(张量并行)在256个GPU上训练405B模型时遇到的NaN问题,并提供系统性的解决方案。
问题现象
当使用FSDP+TP组合在256个GPU上训练405B参数的模型时,训练过程在第一步就出现了NaN值。这种情况通常表明数值不稳定或硬件问题,需要系统性的排查方法。
排查方法与解决方案
1. 硬件层面检查
首先应考虑硬件问题,特别是当NaN问题在多次重启后仍然出现时。推荐使用以下环境变量进行检测:
export TORCH_NCCL_NAN_CHECK=1
这个设置会在所有集体通信操作中自动检查NaN值,并在检测到时触发断言,明确指出触发问题的节点和rank。根据经验,这通常能发现GPU硬件问题(如XID错误),简单的GPU重启往往就能解决问题。
2. 并行策略优化
对于405B参数量的模型,必须使用某种形式的2D并行策略。可以尝试以下两种方案:
- 张量并行(TP):传统的模型并行方式
- 上下文并行(CP):一种替代方案,有时能提供更好的稳定性
实验表明,在256个GPU上运行405B模型时,这两种策略都能稳定运行,因此如果出现NaN更可能是硬件问题而非策略问题。
3. 显存管理优化
虽然显存分配重试通常不会直接影响数值稳定性,但高显存占用(如超过95%)可能导致CUDA缓存重试,在某些大规模训练场景中可能与NaN问题相关。建议:
- 降低批次大小(如设为1)进行测试
- 监控显存使用情况,保持合理余量
4. 通信库版本问题
实际案例表明,某些情况下NaN问题源于通信库(如CCL)的版本兼容性问题。确保使用经过验证的稳定版本是关键。
性能优化建议
在解决NaN问题后,针对405B模型训练还可以考虑以下性能优化措施:
- 激活检查点(AC)策略:可以尝试不同的AC策略(选择性AC→无AC→完全AC)来平衡内存和性能
- 混合并行策略:结合PP(流水线并行)+FSDP+TP的配置可以进一步提升训练效率
- 硬件选择:使用H200等具有更高HBM的GPU可以获得更好的批次大小和MFU(模型浮点运算利用率)
实际训练数据参考
在H200上的实际训练数据显示:
- 批次大小:2(使用完全AC)
- 训练速度:约14小时完成3000步
- MFU:37-40%之间(H200上的表现)
结论
大规模模型训练中的NaN问题需要系统性的排查方法。从硬件检查开始,逐步验证并行策略和显存配置,最后考虑软件栈兼容性。TorchTitan项目中的实践表明,通过科学的方法可以稳定地在256个GPU上训练405B参数的模型。对于希望进一步优化性能的用户,建议尝试不同的并行组合和硬件配置,同时密切监控训练过程中的各项指标。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00