RoutedFusion 的安装和配置教程
2025-05-24 23:22:50作者:袁立春Spencer
1. 项目的基础介绍和主要的编程语言
RoutedFusion 是一个实时深度图融合方法,它通过机器学习技术来融合带有噪声和异常值污染的深度图。该项目主要包括两个神经网络组件:深度路由网络和深度融合网络。深度路由网络负责对深度图进行二维预处理,估计去噪后的深度图及其相应的置信图;深度融合网络则根据场景的当前状态的标准视图、新测量值和置信图预测最优更新。
该项目主要使用 Python 编程语言,同时也涉及到 Shell 脚本和 Dockerfile 的使用。
2. 项目使用的关键技术和框架
- 神经网络:项目使用 PyTorch 框架来构建和训练神经网络。
- 深度图融合:结合深度学习和预处理技术进行深度图的融合。
- Docker:使用 Docker 容器来封装和运行项目环境,确保环境的一致性。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保您的计算机上已经安装以下软件:
- Docker:用于创建和运行容器。
- nvidia-docker:如果您的计算机有 NVIDIA GPU,需要安装此软件以允许 Docker 使用 GPU。
- Python:建议安装 Anaconda,以便更容易管理 Python 环境和依赖。
安装步骤
克隆项目仓库
首先,从命令行中克隆项目仓库并初始化子模块:
git clone https://github.com/weders/RoutedFusion.git
cd RoutedFusion
git submodule update --init --recursive
创建 Docker 环境
推荐使用 Docker 来创建一个隔离的环境。构建 Docker 镜像:
docker build . -t routed-fusion
然后,启动并进入 Docker 容器:
docker run -v $PATH_TO_YOUR_PREPROCESSED_DATA:/data -v $PATH_TO_SAVE_EXPERIMENTS:/experiments --gpus all -it routed-fusion:latest
请将 $PATH_TO_YOUR_PREPROCESSED_DATA
和 $PATH_TO_SAVE_EXPERIMENTS
替换为您实际的路径。
(可选)创建 Anaconda 环境
如果您选择不使用 Docker,您可以创建一个 Anaconda 环境:
conda env create -f environment.yml
conda activate routed-fusion
bash scripts/install_docker.sh
训练和测试
在 Docker 容器中,您可以根据提供的脚本进行训练和测试。例如,训练路由网络:
python train_routing.py --config configs/routing/shapenet.noise.005.yaml
测试预训练模型:
python test_fusion.py --experiment pretrained_models/fusion/shapenet_noise_005 --test configs/tests/shapenet.routed.noise.005.yaml
请根据您的具体需求调整命令行参数。
以上就是 RoutedFusion 的安装和配置教程,按照以上步骤操作,您应该能够成功安装和运行该项目。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
186

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
881
521

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
361
381

React Native鸿蒙化仓库
C++
182
264

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
613
60

open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
118
78