在PEFT项目中结合LoRA微调与自定义模块的最佳实践
概述
在使用PEFT(Parameter-Efficient Fine-Tuning)库进行大语言模型(LLM)微调时,开发者经常会遇到需要同时微调LoRA适配器和自定义模块的场景。本文将深入探讨如何在这种混合微调场景下,确保所有需要训练的参数都能被正确保存。
背景知识
LoRA(Low-Rank Adaptation)是一种参数高效的微调方法,它通过向模型添加低秩矩阵来调整预训练模型的权重,而不是直接微调整个庞大的模型。PEFT库提供了方便的接口来实现这种微调方式。
在实际应用中,我们常常需要在LLM基础上添加一些自定义模块(如分类头、特定任务模块等),这些模块通常需要与LoRA适配器一起训练。这就带来了一个技术挑战:如何确保在保存模型时,不仅保存LoRA适配器,还能保存这些自定义模块的参数。
技术挑战分析
当使用标准的HuggingFace Trainer进行训练时,PEFT模型默认只会保存LoRA适配器的参数。对于同时包含LoRA适配器和自定义模块的复合模型,这种默认行为会导致自定义模块的参数丢失。
解决方案
1. 自定义保存包装器
最可靠的解决方案是创建一个自定义的保存包装器,该包装器能够覆盖模型的保存和加载行为:
class CustomSaveWrapper(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, *args, **kwargs):
return self.model(*args, **kwargs)
def save_pretrained(self, save_directory, **kwargs):
# 保存LoRA适配器
self.model.save_pretrained(save_directory, **kwargs)
# 保存自定义模块
custom_state_dict = {
k: v for k, v in self.model.state_dict().items()
if k.startswith("extra_module.")
}
torch.save(custom_state_dict, os.path.join(save_directory, "custom_weights.bin"))
@classmethod
def from_pretrained(cls, model, save_directory, **kwargs):
# 加载LoRA适配器
model = model.from_pretrained(save_directory, **kwargs)
# 加载自定义模块
custom_weights = torch.load(os.path.join(save_directory, "custom_weights.bin"))
model.load_state_dict(custom_weights, strict=False)
return cls(model)
2. 实现细节说明
-
保存机制:
- 使用标准PEFT方法保存LoRA适配器
- 单独提取并保存自定义模块的参数
- 将两部分保存在同一目录下
-
加载机制:
- 先加载标准的PEFT适配器
- 然后加载自定义模块的参数
- 确保strict=False以避免不匹配的键错误
-
与Trainer的集成:
- 包装器需要完全兼容HuggingFace的Trainer
- 确保所有前向传播方法都能正确传递
最佳实践建议
-
版本控制:在保存自定义模块时,建议同时保存模块的版本信息,以便未来兼容性检查。
-
参数隔离:确保LoRA适配器和自定义模块的参数命名空间不冲突。
-
测试验证:在部署前,务必验证保存和加载的完整性,特别是当模型结构较复杂时。
-
文档记录:为复合模型编写清晰的文档,说明其结构和保存/加载的特殊要求。
扩展思考
这种混合微调模式在实际应用中非常常见,特别是在:
- 多任务学习场景
- 需要特定领域知识注入的场合
- 模型架构扩展需求
理解并掌握这种技术组合,可以大大增强开发者利用PEFT库解决复杂问题的能力,同时保持参数高效的优势。
结论
通过自定义保存包装器的方法,开发者可以灵活地结合PEFT的LoRA微调与自定义模块训练,同时确保所有训练参数都能被正确保存和加载。这种方法既保持了PEFT的参数高效特性,又提供了足够的灵活性来适应各种复杂的模型扩展需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00