在PEFT项目中结合LoRA微调与自定义模块的最佳实践
概述
在使用PEFT(Parameter-Efficient Fine-Tuning)库进行大语言模型(LLM)微调时,开发者经常会遇到需要同时微调LoRA适配器和自定义模块的场景。本文将深入探讨如何在这种混合微调场景下,确保所有需要训练的参数都能被正确保存。
背景知识
LoRA(Low-Rank Adaptation)是一种参数高效的微调方法,它通过向模型添加低秩矩阵来调整预训练模型的权重,而不是直接微调整个庞大的模型。PEFT库提供了方便的接口来实现这种微调方式。
在实际应用中,我们常常需要在LLM基础上添加一些自定义模块(如分类头、特定任务模块等),这些模块通常需要与LoRA适配器一起训练。这就带来了一个技术挑战:如何确保在保存模型时,不仅保存LoRA适配器,还能保存这些自定义模块的参数。
技术挑战分析
当使用标准的HuggingFace Trainer进行训练时,PEFT模型默认只会保存LoRA适配器的参数。对于同时包含LoRA适配器和自定义模块的复合模型,这种默认行为会导致自定义模块的参数丢失。
解决方案
1. 自定义保存包装器
最可靠的解决方案是创建一个自定义的保存包装器,该包装器能够覆盖模型的保存和加载行为:
class CustomSaveWrapper(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, *args, **kwargs):
return self.model(*args, **kwargs)
def save_pretrained(self, save_directory, **kwargs):
# 保存LoRA适配器
self.model.save_pretrained(save_directory, **kwargs)
# 保存自定义模块
custom_state_dict = {
k: v for k, v in self.model.state_dict().items()
if k.startswith("extra_module.")
}
torch.save(custom_state_dict, os.path.join(save_directory, "custom_weights.bin"))
@classmethod
def from_pretrained(cls, model, save_directory, **kwargs):
# 加载LoRA适配器
model = model.from_pretrained(save_directory, **kwargs)
# 加载自定义模块
custom_weights = torch.load(os.path.join(save_directory, "custom_weights.bin"))
model.load_state_dict(custom_weights, strict=False)
return cls(model)
2. 实现细节说明
-
保存机制:
- 使用标准PEFT方法保存LoRA适配器
- 单独提取并保存自定义模块的参数
- 将两部分保存在同一目录下
-
加载机制:
- 先加载标准的PEFT适配器
- 然后加载自定义模块的参数
- 确保strict=False以避免不匹配的键错误
-
与Trainer的集成:
- 包装器需要完全兼容HuggingFace的Trainer
- 确保所有前向传播方法都能正确传递
最佳实践建议
-
版本控制:在保存自定义模块时,建议同时保存模块的版本信息,以便未来兼容性检查。
-
参数隔离:确保LoRA适配器和自定义模块的参数命名空间不冲突。
-
测试验证:在部署前,务必验证保存和加载的完整性,特别是当模型结构较复杂时。
-
文档记录:为复合模型编写清晰的文档,说明其结构和保存/加载的特殊要求。
扩展思考
这种混合微调模式在实际应用中非常常见,特别是在:
- 多任务学习场景
- 需要特定领域知识注入的场合
- 模型架构扩展需求
理解并掌握这种技术组合,可以大大增强开发者利用PEFT库解决复杂问题的能力,同时保持参数高效的优势。
结论
通过自定义保存包装器的方法,开发者可以灵活地结合PEFT的LoRA微调与自定义模块训练,同时确保所有训练参数都能被正确保存和加载。这种方法既保持了PEFT的参数高效特性,又提供了足够的灵活性来适应各种复杂的模型扩展需求。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00