探索智能优化:利用自导数据选择提升LLM性能的Cherry项目
2024-06-07 03:15:05作者:范垣楠Rhoda
在海量的开放源代码数据中寻找能够显著提高大型语言模型(LLMs)性能的关键样本是一项挑战。为此,我们带来了Cherry项目——一个创新的数据选择方法,它让LLMs能够自主地从庞大的指令调优数据集中挑选出“樱桃数据”。这个项目以最小的人工干预和成本,实现了对LLM教学的高效提升。
项目介绍
Cherry项目基于From Quantity to Quality的研究成果,该研究论文已被接受为NAACL 2024的主要会议论文。通过学习短暂经验,模型可以在初步训练阶段理解指令,进而评估更广泛数据集的质量,提出了一种名为Instruction-Following Difficulty (IFD)的新指标。通过IFD评分,我们可以量化每个样本遵循指令的难度,从而指导选择最具影响力的训练样本进行精调。
项目技术分析
Cherry数据选择过程分为三个关键步骤:
- 学习短暂经验:模型初识目标数据集的一小部分。
- 基于经验的评估:模型自我评估对各指令的响应生成能力,计算IFD分数。
- 自我引导的经验重训:利用具有高IFD得分的樱桃数据来改善模型性能。
此外,项目还引入了Superfiltering技术,使用较小的LLM如GPT-2来高效筛选用于指令调优的数据。
应用场景与价值
Cherry项目适用于任何希望优化大规模语言模型性能的场景,特别是当资源有限,需要在不牺牲质量的前提下高效利用数据时。例如,在自然语言处理任务中,可以使用这种方法快速提升模型在问答、文本分类或对话系统等领域的表现。
项目特点
- 自主性:Cherry数据选择无需依赖额外的外部模型,完全由内部机制驱动。
- 效率:使用约5%或10%的数据即可达到全量数据相当的性能水平,已在Alpaca和WizardLM数据集上验证。
- 灵活性:IFD分数提供了一个度量标准,用于识别适应指令调优的良好数据类型。
- 创新性:提出的教师-学生协作策略可以构建定制的训练集,并通过小规模模型实现高效数据筛选(Superfiltering)。
要开始使用Cherry项目,请参考其提供的安装指南,运行代码并探索如何利用樱桃数据来优化您的LLM模型。通过智能数据选取,让我们一起推动自然语言处理的进步,迈向更高品质的语言模型应用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
114
仓颉编译器源码及 cjdb 调试工具。
C++
138
869