首页
/ 探索智能优化:利用自导数据选择提升LLM性能的Cherry项目

探索智能优化:利用自导数据选择提升LLM性能的Cherry项目

2024-06-07 03:15:05作者:范垣楠Rhoda

在海量的开放源代码数据中寻找能够显著提高大型语言模型(LLMs)性能的关键样本是一项挑战。为此,我们带来了Cherry项目——一个创新的数据选择方法,它让LLMs能够自主地从庞大的指令调优数据集中挑选出“樱桃数据”。这个项目以最小的人工干预和成本,实现了对LLM教学的高效提升。

项目介绍

Cherry项目基于From Quantity to Quality的研究成果,该研究论文已被接受为NAACL 2024的主要会议论文。通过学习短暂经验,模型可以在初步训练阶段理解指令,进而评估更广泛数据集的质量,提出了一种名为Instruction-Following Difficulty (IFD)的新指标。通过IFD评分,我们可以量化每个样本遵循指令的难度,从而指导选择最具影响力的训练样本进行精调。

项目技术分析

Cherry数据选择过程分为三个关键步骤:

  1. 学习短暂经验:模型初识目标数据集的一小部分。
  2. 基于经验的评估:模型自我评估对各指令的响应生成能力,计算IFD分数。
  3. 自我引导的经验重训:利用具有高IFD得分的樱桃数据来改善模型性能。

此外,项目还引入了Superfiltering技术,使用较小的LLM如GPT-2来高效筛选用于指令调优的数据。

应用场景与价值

Cherry项目适用于任何希望优化大规模语言模型性能的场景,特别是当资源有限,需要在不牺牲质量的前提下高效利用数据时。例如,在自然语言处理任务中,可以使用这种方法快速提升模型在问答、文本分类或对话系统等领域的表现。

项目特点

  • 自主性:Cherry数据选择无需依赖额外的外部模型,完全由内部机制驱动。
  • 效率:使用约5%或10%的数据即可达到全量数据相当的性能水平,已在Alpaca和WizardLM数据集上验证。
  • 灵活性:IFD分数提供了一个度量标准,用于识别适应指令调优的良好数据类型。
  • 创新性:提出的教师-学生协作策略可以构建定制的训练集,并通过小规模模型实现高效数据筛选(Superfiltering)。

要开始使用Cherry项目,请参考其提供的安装指南,运行代码并探索如何利用樱桃数据来优化您的LLM模型。通过智能数据选取,让我们一起推动自然语言处理的进步,迈向更高品质的语言模型应用。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K
kernelkernel
deepin linux kernel
C
22
6
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
518
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0