Clusterfck项目技术文档
2024-12-24 09:24:36作者:蔡怀权
1. 安装指南
在开始使用Clusterfck之前,您需要先安装该库。以下是安装步骤:
对于Node.js环境,您可以通过npm命令进行安装:
npm install clusterfck
如果您希望在浏览器中使用,可以下载浏览器的文件版本。
2. 项目使用说明
Clusterfck是一个JavaScript的聚类分析库,支持层次聚类(Hierarchical clustering)和K-means聚类。
K-means聚类
以下是使用K-means聚类的示例代码:
var clusterfck = require("clusterfck");
var colors = [
[20, 20, 80],
[22, 22, 90],
[250, 255, 253],
[0, 30, 70],
[200, 0, 23],
[100, 54, 100],
[255, 13, 8]
];
// 计算聚类。
var clusters = clusterfck.kmeans(colors, 3);
kmeans
函数的第二个参数是要生成的聚类数(默认值为Math.sqrt(n/2)
,其中n
是向量的数量)。返回值是一个包含聚类的数组。
分类
对于分类,需要实例化一个新的Kmeans
对象。
var kmeans = new clusterfck.Kmeans();
// 计算聚类。
var clusters = kmeans.cluster(colors, 3);
// 为一个新的数据点计算聚类索引。
var clusterIndex = kmeans.classify([0, 0, 225]);
序列化
toJSON()
和fromJSON()
方法可以用于序列化和反序列化。
// 将质心序列化为JSON。
var json = kmeans.toJSON();
// 从JSON反序列化质心。
kmeans = kmeans.fromJSON(json);
// 从先前序列化的质心计算聚类索引。
var clusterIndex = kmeans.classify([0, 0, 225]);
使用现有质心初始化
// 使用来自数据库的现有质心?
var centroids = [ [ 35.5, 31.5, 85 ], [ 250, 255, 253 ], [ 227.5, 6.5, 15.5 ] ];
// 使用质心初始化构造函数。
var kmeans = new clusterfck.Kmeans(centroids);
// 计算聚类索引。
var clusterIndex = kmeans.classify([0, 0, 225]);
访问质心和K值
聚类计算完成后或通过fromJSON()
加载后,可以通过centroids
属性访问计算得到的中心,通过centroids.length
获取K值。
// 计算聚类。
var clusters = kmeans.cluster(colors, 3);
// 访问质心,长度为3的数组。
var centroids = kmeans.centroids;
// 访问k值。
var k = centroids.length;
层次聚类
以下是使用层次聚类的示例代码:
var clusterfck = require("clusterfck");
var colors = [
[20, 20, 80],
[22, 22, 90],
[250, 255, 253],
[100, 54, 255]
];
var clusters = clusterfck.hcluster(colors);
hcluster
函数返回一个对象,该对象表示聚类的层次结构,具有left
和right
子树。叶节点聚类具有value
属性,这是数据集中的向量。
距离度量和方法
可以指定距离度量,包括"euclidean"
(默认)、"manhattan"
和"max"
。连接准则可以是"average"
(默认)、"single"
和"complete"
。
var tree = clusterfck.hcluster(colors, "euclidean", "single");
3. 项目API使用文档
Clusterfck库提供的API包括:
kmeans
: 进行K-means聚类。Kmeans
: K-means聚类的构造函数,可用于分类、序列化、反序列化和使用现有质心初始化。hcluster
: 进行层次聚类。
更多详细的使用方法和示例,请参考项目的readme文件。
4. 项目安装方式
如安装指南中所述,您可以通过npm命令来安装Clusterfck库:
npm install clusterfck
或者,如果您希望在浏览器中使用,可以下载对应的浏览器文件版本。
热门项目推荐
相关项目推荐
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython03
- topiam-eiam开源IDaas/IAM平台,用于管理企业内员工账号、权限、身份认证、应用访问,帮助整合部署在本地或云端的内部办公系统、业务系统及三方 SaaS 系统的所有身份,实现一个账号打通所有应用的服务。Java00
- 每日精选项目🔥🔥 12.24日推荐:高性能 C 语言 UI 布局库🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~017
- excelizehttps://github.com/xuri/excelize Excelize 是 Go 语言编写的一个用来操作 Office Excel 文档类库,基于 ECMA-376 OOXML 技术标准。可以使用它来读取、写入 XLSX 文件,相比较其他的开源类库,Excelize 支持操作带有数据透视表、切片器、图表与图片的 Excel 并支持向 Excel 中插入图片与创建简单图表,目前是 Go 开源项目中唯一支持复杂样式 XLSX 文件的类库,可应用于各类报表平台、云计算和边缘计算系统。Go02
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie039
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0102
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript010
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML012
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
46
37
PDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/Docker
Python
30
3
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
171
39
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
165
34
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
249
63
RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
24
17
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
892
0
RuoYi-Cloud
🎉 基于Spring Boot、Spring Cloud & Alibaba的分布式微服务架构权限管理系统,同时提供了 Vue3 的版本
Java
25
10
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
391
102
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
11
2