Clusterfck项目技术文档
2024-12-24 01:08:48作者:蔡怀权
1. 安装指南
在开始使用Clusterfck之前,您需要先安装该库。以下是安装步骤:
对于Node.js环境,您可以通过npm命令进行安装:
npm install clusterfck
如果您希望在浏览器中使用,可以下载浏览器的文件版本。
2. 项目使用说明
Clusterfck是一个JavaScript的聚类分析库,支持层次聚类(Hierarchical clustering)和K-means聚类。
K-means聚类
以下是使用K-means聚类的示例代码:
var clusterfck = require("clusterfck");
var colors = [
[20, 20, 80],
[22, 22, 90],
[250, 255, 253],
[0, 30, 70],
[200, 0, 23],
[100, 54, 100],
[255, 13, 8]
];
// 计算聚类。
var clusters = clusterfck.kmeans(colors, 3);
kmeans函数的第二个参数是要生成的聚类数(默认值为Math.sqrt(n/2),其中n是向量的数量)。返回值是一个包含聚类的数组。
分类
对于分类,需要实例化一个新的Kmeans对象。
var kmeans = new clusterfck.Kmeans();
// 计算聚类。
var clusters = kmeans.cluster(colors, 3);
// 为一个新的数据点计算聚类索引。
var clusterIndex = kmeans.classify([0, 0, 225]);
序列化
toJSON()和fromJSON()方法可以用于序列化和反序列化。
// 将质心序列化为JSON。
var json = kmeans.toJSON();
// 从JSON反序列化质心。
kmeans = kmeans.fromJSON(json);
// 从先前序列化的质心计算聚类索引。
var clusterIndex = kmeans.classify([0, 0, 225]);
使用现有质心初始化
// 使用来自数据库的现有质心?
var centroids = [ [ 35.5, 31.5, 85 ], [ 250, 255, 253 ], [ 227.5, 6.5, 15.5 ] ];
// 使用质心初始化构造函数。
var kmeans = new clusterfck.Kmeans(centroids);
// 计算聚类索引。
var clusterIndex = kmeans.classify([0, 0, 225]);
访问质心和K值
聚类计算完成后或通过fromJSON()加载后,可以通过centroids属性访问计算得到的中心,通过centroids.length获取K值。
// 计算聚类。
var clusters = kmeans.cluster(colors, 3);
// 访问质心,长度为3的数组。
var centroids = kmeans.centroids;
// 访问k值。
var k = centroids.length;
层次聚类
以下是使用层次聚类的示例代码:
var clusterfck = require("clusterfck");
var colors = [
[20, 20, 80],
[22, 22, 90],
[250, 255, 253],
[100, 54, 255]
];
var clusters = clusterfck.hcluster(colors);
hcluster函数返回一个对象,该对象表示聚类的层次结构,具有left和right子树。叶节点聚类具有value属性,这是数据集中的向量。
距离度量和方法
可以指定距离度量,包括"euclidean"(默认)、"manhattan"和"max"。连接准则可以是"average"(默认)、"single"和"complete"。
var tree = clusterfck.hcluster(colors, "euclidean", "single");
3. 项目API使用文档
Clusterfck库提供的API包括:
kmeans: 进行K-means聚类。Kmeans: K-means聚类的构造函数,可用于分类、序列化、反序列化和使用现有质心初始化。hcluster: 进行层次聚类。
更多详细的使用方法和示例,请参考项目的readme文件。
4. 项目安装方式
如安装指南中所述,您可以通过npm命令来安装Clusterfck库:
npm install clusterfck
或者,如果您希望在浏览器中使用,可以下载对应的浏览器文件版本。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136