Clusterfck项目技术文档
2024-12-24 03:50:20作者:蔡怀权
1. 安装指南
在开始使用Clusterfck之前,您需要先安装该库。以下是安装步骤:
对于Node.js环境,您可以通过npm命令进行安装:
npm install clusterfck
如果您希望在浏览器中使用,可以下载浏览器的文件版本。
2. 项目使用说明
Clusterfck是一个JavaScript的聚类分析库,支持层次聚类(Hierarchical clustering)和K-means聚类。
K-means聚类
以下是使用K-means聚类的示例代码:
var clusterfck = require("clusterfck");
var colors = [
[20, 20, 80],
[22, 22, 90],
[250, 255, 253],
[0, 30, 70],
[200, 0, 23],
[100, 54, 100],
[255, 13, 8]
];
// 计算聚类。
var clusters = clusterfck.kmeans(colors, 3);
kmeans函数的第二个参数是要生成的聚类数(默认值为Math.sqrt(n/2),其中n是向量的数量)。返回值是一个包含聚类的数组。
分类
对于分类,需要实例化一个新的Kmeans对象。
var kmeans = new clusterfck.Kmeans();
// 计算聚类。
var clusters = kmeans.cluster(colors, 3);
// 为一个新的数据点计算聚类索引。
var clusterIndex = kmeans.classify([0, 0, 225]);
序列化
toJSON()和fromJSON()方法可以用于序列化和反序列化。
// 将质心序列化为JSON。
var json = kmeans.toJSON();
// 从JSON反序列化质心。
kmeans = kmeans.fromJSON(json);
// 从先前序列化的质心计算聚类索引。
var clusterIndex = kmeans.classify([0, 0, 225]);
使用现有质心初始化
// 使用来自数据库的现有质心?
var centroids = [ [ 35.5, 31.5, 85 ], [ 250, 255, 253 ], [ 227.5, 6.5, 15.5 ] ];
// 使用质心初始化构造函数。
var kmeans = new clusterfck.Kmeans(centroids);
// 计算聚类索引。
var clusterIndex = kmeans.classify([0, 0, 225]);
访问质心和K值
聚类计算完成后或通过fromJSON()加载后,可以通过centroids属性访问计算得到的中心,通过centroids.length获取K值。
// 计算聚类。
var clusters = kmeans.cluster(colors, 3);
// 访问质心,长度为3的数组。
var centroids = kmeans.centroids;
// 访问k值。
var k = centroids.length;
层次聚类
以下是使用层次聚类的示例代码:
var clusterfck = require("clusterfck");
var colors = [
[20, 20, 80],
[22, 22, 90],
[250, 255, 253],
[100, 54, 255]
];
var clusters = clusterfck.hcluster(colors);
hcluster函数返回一个对象,该对象表示聚类的层次结构,具有left和right子树。叶节点聚类具有value属性,这是数据集中的向量。
距离度量和方法
可以指定距离度量,包括"euclidean"(默认)、"manhattan"和"max"。连接准则可以是"average"(默认)、"single"和"complete"。
var tree = clusterfck.hcluster(colors, "euclidean", "single");
3. 项目API使用文档
Clusterfck库提供的API包括:
kmeans: 进行K-means聚类。Kmeans: K-means聚类的构造函数,可用于分类、序列化、反序列化和使用现有质心初始化。hcluster: 进行层次聚类。
更多详细的使用方法和示例,请参考项目的readme文件。
4. 项目安装方式
如安装指南中所述,您可以通过npm命令来安装Clusterfck库:
npm install clusterfck
或者,如果您希望在浏览器中使用,可以下载对应的浏览器文件版本。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660