AnkiDroid自定义学习功能中"按卡片状态或标签学习"的实现优化
2025-05-25 03:18:01作者:廉皓灿Ida
背景介绍
AnkiDroid作为一款流行的闪卡学习应用,其自定义学习功能允许用户根据特定需求创建临时学习会话。其中"按卡片状态或标签学习"是一个重要但尚未完全实现的功能,目前仅通过标签对话框提供了部分支持。
当前实现的问题分析
现有实现存在几个关键问题:
- 功能不完整:相比Anki桌面版,移动端缺少完整的卡片状态筛选选项
- UI设计不合理:标签对话框被复用但并非最佳选择
- 交互流程不清晰:用户无法直观地设置学习参数
技术方案设计
新UI设计方案
基于讨论,建议采用以下UI结构:
-
标题区域:明确显示"按卡片状态或标签学习"
-
卡片状态选择:使用下拉菜单提供四种选项:
- 仅新卡片
- 仅到期卡片
- 所有复习卡片随机排序
- 所有卡片随机排序(不重新安排)
-
标签选择按钮:打开弹窗选择标签,包含搜索功能
-
卡片数量输入:默认值100,可调整
-
操作按钮:开始学习和取消
后端架构调整
-
引入
CustomStudyCramResponse
数据结构,封装:- 学习类型(
CramKind
) - 卡片数量限制
- 学习类型(
-
重构
CardStateFilter
枚举,与后端API对齐:- 每种状态对应描述文本和排序顺序
- 提供从序号到枚举值的转换方法
-
优化标签对话框:
- 仅在学习模式下显示相关选项
- 添加卡片数量设置功能
实现细节
状态管理
使用枚举清晰定义卡片状态筛选条件:
enum class CardStateFilter(
val getDescription: () -> String,
val order: Int,
val cramKind: CramKind
) {
NEW({ "仅新卡片" }, 0, CramKind.CRAM_KIND_NEW),
DUE({ "仅到期卡片" }, 1, CramKind.CRAM_KIND_DUE),
REVIEW({ "所有复习卡片随机排序" }, 2, CramKind.CRAM_KIND_REVIEW),
ALL_CARDS({ "所有卡片随机排序(不重新安排)" }, 3, CramKind.CRAM_KIND_ALL);
}
UI组件交互
-
卡片数量设置:
- 使用
IntegerDialog
收集用户输入 - 实时更新显示当前设置值
- 使用
-
状态选择:
- 动态生成单选按钮组
- 垂直布局提高可点击区域
-
标签选择:
- 复用现有标签选择逻辑
- 添加搜索和批量操作支持
技术挑战与解决方案
-
向后兼容:
- 保持现有标签对话框的其他使用场景不变
- 通过类型检查区分不同使用模式
-
状态持久化:
- 保存用户选择的卡片数量
- 处理配置变更时的状态恢复
-
性能优化:
- 延迟加载非必要UI组件
- 使用约束布局优化渲染性能
最佳实践建议
- 原子提交:每个提交应保持独立可编译和测试
- 清晰的提交信息:准确描述变更内容和目的
- 渐进式开发:先实现核心功能,再逐步完善
- UI一致性:遵循Material Design规范
- 错误处理:提供有意义的错误反馈
总结
通过重新设计"按卡片状态或标签学习"功能的UI和实现架构,可以显著提升AnkiDroid用户的学习体验。关键在于提供清晰的操作流程、完整的功能支持,同时保持代码的可维护性和扩展性。这种改进不仅解决了当前功能不完整的问题,也为未来可能的扩展奠定了基础。
对于开发者而言,理解Anki的核心学习算法与UI设计原则的平衡是成功实现这类功能的关键。建议在开发过程中持续参考桌面版的实现,同时考虑移动端特有的交互模式和限制。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58