AWS Deep Learning Containers发布PyTorch 2.4.0推理镜像
AWS Deep Learning Containers(DLC)是AWS官方提供的深度学习容器镜像集合,它预装了流行的深度学习框架、依赖库和工具,使开发者能够快速部署深度学习应用而无需手动配置环境。这些容器镜像经过AWS优化,可直接用于Amazon SageMaker、Amazon ECS和Amazon EKS等服务。
近日,AWS Deep Learning Containers项目发布了PyTorch 2.4.0推理专用镜像的新版本,支持Python 3.11运行环境。本次更新包含CPU和GPU两个版本的镜像,均基于Ubuntu 22.04操作系统构建。
镜像版本详情
CPU版本镜像
CPU版本镜像基于Ubuntu 22.04系统,预装了PyTorch 2.4.0及其相关组件。主要特性包括:
- PyTorch核心库版本:2.4.0+cpu
- TorchVision版本:0.19.0+cpu
- TorchAudio版本:2.4.0+cpu
- Python版本:3.11
- 基础操作系统:Ubuntu 22.04
该镜像还包含了常用的数据科学和机器学习工具链,如NumPy 2.1.2、Pandas 2.2.3、Scikit-learn 1.5.2等,以及AWS SDK(boto3 1.35.46)等云服务集成组件。
GPU版本镜像
GPU版本镜像同样基于Ubuntu 22.04系统,但针对GPU加速进行了优化,主要特性包括:
- PyTorch核心库版本:2.4.0+cu124(CUDA 12.4)
- TorchVision版本:0.19.0+cu124
- TorchAudio版本:2.4.0+cu124
- Python版本:3.11
- CUDA版本:12.4
- cuDNN版本:9(对应CUDA 12)
- 基础操作系统:Ubuntu 22.04
GPU镜像除了包含CPU版本的所有功能外,还预装了MPI支持(mpi4py 4.0.1)和完整的CUDA工具链,适合需要GPU加速的深度学习推理任务。
技术亮点
-
PyTorch 2.4.0新特性支持:新版本PyTorch带来了性能改进和新功能,容器镜像确保开发者可以立即使用这些最新特性。
-
Python 3.11环境:采用最新的Python稳定版本,提供更好的性能和语言特性支持。
-
完整的工具链集成:不仅包含PyTorch核心库,还预装了TorchServe模型服务框架和Torch Model Archiver工具,方便模型部署。
-
优化的系统依赖:镜像中包含了经过验证的GCC 11和libstdc++6库版本,确保系统层面的兼容性和稳定性。
-
开发工具支持:预装了Emacs等开发工具,方便开发者直接在容器内进行调试和开发。
使用场景
这些预构建的PyTorch推理镜像特别适合以下场景:
- 在Amazon SageMaker上快速部署PyTorch模型服务
- 构建可扩展的深度学习推理微服务
- 开发需要GPU加速的计算机视觉或自然语言处理应用
- 需要标准化、可复现的深度学习环境的研究项目
AWS Deep Learning Containers的PyTorch镜像通过提供开箱即用的环境,大幅减少了开发者在环境配置上的时间投入,使团队能够更专注于模型开发和业务逻辑实现。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00