【亲测免费】 MiDaS:单目深度估计的强大工具
2026-01-14 17:29:44作者:苗圣禹Peter
项目介绍
MiDaS 是一个开源项目,专注于从单张图像中计算深度信息。该项目由 René Ranftl 等人开发,并伴随着两篇重要的论文:《Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer》和《Vision Transformers for Dense Prediction》。MiDaS 3.1 版本提供了最新的技术报告和视频演示,展示了其在深度估计领域的最新进展。
MiDaS 通过多目标优化训练,使用了多达 12 个数据集(包括 ReDWeb、DIML、Movies、MegaDepth、WSVD、TartanAir、HRWSI、ApolloScape、BlendedMVS、IRS、KITTI、NYU Depth V2),使其在零样本跨数据集转移任务中表现出色。
项目技术分析
MiDaS 的核心技术在于其深度学习模型,这些模型基于 Transformer 架构,能够在不同分辨率和设备上提供高效的深度估计。项目提供了多种模型选择,包括:
- dpt_beit_large_512:最高质量的模型,适用于对精度要求极高的场景。
- dpt_swin2_large_384:在质量和速度之间取得良好平衡的模型,适用于中等要求的场景。
- dpt_swin2_tiny_256 和 dpt_levit_224:适用于嵌入式设备的轻量级模型。
- openvino_midas_v21_small:适用于 Intel CPU 的 OpenVINO 模型,提供高效的推理性能。
这些模型不仅支持多种输入分辨率,还提供了灵活的部署选项,包括 Docker、PyTorch Hub、TensorFlow、ONNX 以及移动设备和 ROS1 系统。
项目及技术应用场景
MiDaS 的应用场景非常广泛,包括但不限于:
- 自动驾驶:在自动驾驶系统中,准确的深度估计对于环境感知至关重要。
- 增强现实(AR):在 AR 应用中,深度信息可以帮助实现更逼真的虚拟对象叠加。
- 机器人导航:机器人需要精确的深度信息来进行路径规划和避障。
- 摄影与视频制作:在摄影和视频制作中,深度估计可以帮助实现更好的图像合成和特效处理。
项目特点
MiDaS 项目具有以下显著特点:
- 多数据集训练:通过混合多达 12 个数据集进行训练,确保模型在不同数据集上的泛化能力。
- 零样本跨数据集转移:模型在未见过的数据集上表现出色,无需额外训练。
- 多种模型选择:提供多种模型,满足不同应用场景的需求,从高精度到轻量级均有覆盖。
- 灵活的部署选项:支持多种部署方式,包括 Docker、PyTorch Hub、TensorFlow、ONNX 等,方便用户在不同平台上使用。
- 开源与社区支持:作为开源项目,MiDaS 拥有活跃的社区支持,用户可以轻松获取帮助和资源。
MiDaS 不仅在学术研究中表现出色,也在实际应用中展现了强大的潜力。无论你是研究人员、开发者还是技术爱好者,MiDaS 都是一个值得尝试的强大工具。立即访问 MiDaS GitHub 仓库,开始你的深度估计之旅吧!
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C099
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
235
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705