Strawberry GraphQL 0.264.0版本发布:增强Relay Edge子类支持
Strawberry是一个基于Python的现代GraphQL库,它提供了简洁的API和强大的类型系统,让开发者能够轻松构建GraphQL服务。该项目采用Python的类型注解特性,使得定义GraphQL schema变得直观且类型安全。
在最新发布的0.264.0版本中,Strawberry对Relay Edge子类的支持进行了显著增强,为开发者提供了更灵活的边(Edge)类型定制能力。这些改进主要体现在两个方面:
首先,resolve_edge方法现在支持**kwargs参数。这一变化意味着开发者可以在自定义边类中添加额外字段,而无需完全重写resolve_edge方法。例如,开发者可以创建一个包含索引字段的自定义边类,并通过resolve_edge方法在解析时设置这个字段的值。这种设计既保持了代码的简洁性,又提供了足够的扩展空间。
其次,新版本允许开发者指定自定义的游标前缀。在GraphQL的分页实现中,游标(cursor)通常用于标识数据的位置。通过设置CURSOR_PREFIX类变量,开发者可以创建不同于标准ListConnection的游标类型,满足特定的业务需求或实现特殊的分页逻辑。
这些改进由社区贡献者@diesieben07通过PR #3836实现,展示了Strawberry项目活跃的社区生态和持续的演进能力。对于使用Relay规范构建GraphQL API的开发者来说,这些增强功能将提供更大的灵活性和控制力,使得分页实现能够更好地适应各种复杂场景。
总的来说,Strawberry 0.264.0版本的这些改进进一步巩固了它作为Python生态中优秀GraphQL解决方案的地位,特别是对于那些需要实现复杂分页逻辑的应用场景。开发者现在可以更自由地定制边类型和游标机制,同时保持代码的整洁和可维护性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00