Milvus项目中JSON路径索引与表达式过滤的协同问题分析
2025-05-04 13:54:38作者:俞予舒Fleming
问题背景
在Milvus 2.5版本中,当使用JSON路径索引结合表达式模板和搜索提示(hint)进行查询时,发现了一个关键问题。具体表现为:在创建了JSON路径索引后,使用"not in [array]"或"!="这类否定表达式进行过滤查询时,返回的结果集不正确。
问题现象
测试案例中,当执行类似json_field['number'] not in [1, 2, 3]这样的查询时:
- 未创建JSON路径索引时:查询结果正确,返回了所有number字段值不在1、2、3中的文档
- 创建JSON路径索引后:查询结果错误,反而返回了包含1、2、3的文档,同时遗漏了部分符合条件的数据
这种不一致性表明JSON路径索引与表达式过滤的协同处理存在缺陷,特别是在处理否定条件时。
技术分析
根本原因
经过深入分析,发现问题出在后置过滤(post filter)与JSON索引的交互上。当启用迭代过滤(iterative_filter)提示时,系统应该:
- 首先使用索引快速缩小结果范围
- 然后对初步结果进行表达式过滤
但在当前实现中,对于JSON字段的否定表达式过滤,系统错误地依赖了索引过滤而忽略了后置过滤步骤,导致不符合条件的文档被错误地包含在结果中。
影响范围
该问题主要影响以下场景:
- 使用JSON字段进行否定条件查询(not in, !=)
- 结合了表达式模板和搜索提示
- 已创建针对该JSON字段的路径索引
解决方案
修复方案的核心是确保在使用后置过滤时,系统不会错误地依赖索引进行过滤。具体包括:
- 明确过滤阶段:严格区分索引过滤和后置过滤阶段
- 正确处理否定条件:对于JSON字段的否定表达式,确保后置过滤阶段正确执行
- 优化查询计划:改进查询优化器对JSON路径索引和表达式过滤协同工作的处理逻辑
最佳实践建议
基于这一问题的分析,建议开发人员在使用Milvus的JSON功能时注意以下几点:
- 测试验证:在使用否定表达式查询JSON字段时,务必验证结果是否符合预期
- 索引策略:谨慎评估是否需要为JSON字段创建路径索引,特别是当主要使用否定条件查询时
- 版本升级:确保使用修复后的版本(如Milvus 2.5.7rc2及以上)
- 监控机制:对关键查询建立结果验证机制,确保数据一致性
总结
JSON路径索引是Milvus提供的一个强大功能,能够显著提升对JSON字段的查询效率。然而,在与特定类型的表达式(特别是否定条件)结合使用时,需要特别注意其行为是否符合预期。通过理解这一问题背后的技术细节,开发人员可以更好地利用Milvus的JSON功能,同时避免潜在的数据一致性问题。
该问题的修复体现了Milvus社区对数据一致性和查询准确性的高度重视,也为复杂查询场景下的JSON处理提供了更可靠的基础。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660