Milvus项目中JSON路径索引与表达式过滤的协同问题分析
2025-05-04 01:24:08作者:俞予舒Fleming
问题背景
在Milvus 2.5版本中,当使用JSON路径索引结合表达式模板和搜索提示(hint)进行查询时,发现了一个关键问题。具体表现为:在创建了JSON路径索引后,使用"not in [array]"或"!="这类否定表达式进行过滤查询时,返回的结果集不正确。
问题现象
测试案例中,当执行类似json_field['number'] not in [1, 2, 3]
这样的查询时:
- 未创建JSON路径索引时:查询结果正确,返回了所有number字段值不在1、2、3中的文档
- 创建JSON路径索引后:查询结果错误,反而返回了包含1、2、3的文档,同时遗漏了部分符合条件的数据
这种不一致性表明JSON路径索引与表达式过滤的协同处理存在缺陷,特别是在处理否定条件时。
技术分析
根本原因
经过深入分析,发现问题出在后置过滤(post filter)与JSON索引的交互上。当启用迭代过滤(iterative_filter)提示时,系统应该:
- 首先使用索引快速缩小结果范围
- 然后对初步结果进行表达式过滤
但在当前实现中,对于JSON字段的否定表达式过滤,系统错误地依赖了索引过滤而忽略了后置过滤步骤,导致不符合条件的文档被错误地包含在结果中。
影响范围
该问题主要影响以下场景:
- 使用JSON字段进行否定条件查询(not in, !=)
- 结合了表达式模板和搜索提示
- 已创建针对该JSON字段的路径索引
解决方案
修复方案的核心是确保在使用后置过滤时,系统不会错误地依赖索引进行过滤。具体包括:
- 明确过滤阶段:严格区分索引过滤和后置过滤阶段
- 正确处理否定条件:对于JSON字段的否定表达式,确保后置过滤阶段正确执行
- 优化查询计划:改进查询优化器对JSON路径索引和表达式过滤协同工作的处理逻辑
最佳实践建议
基于这一问题的分析,建议开发人员在使用Milvus的JSON功能时注意以下几点:
- 测试验证:在使用否定表达式查询JSON字段时,务必验证结果是否符合预期
- 索引策略:谨慎评估是否需要为JSON字段创建路径索引,特别是当主要使用否定条件查询时
- 版本升级:确保使用修复后的版本(如Milvus 2.5.7rc2及以上)
- 监控机制:对关键查询建立结果验证机制,确保数据一致性
总结
JSON路径索引是Milvus提供的一个强大功能,能够显著提升对JSON字段的查询效率。然而,在与特定类型的表达式(特别是否定条件)结合使用时,需要特别注意其行为是否符合预期。通过理解这一问题背后的技术细节,开发人员可以更好地利用Milvus的JSON功能,同时避免潜在的数据一致性问题。
该问题的修复体现了Milvus社区对数据一致性和查询准确性的高度重视,也为复杂查询场景下的JSON处理提供了更可靠的基础。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44