MMAction2中PoseC3D自定义数据集训练指南
2025-06-12 08:32:21作者:舒璇辛Bertina
前言
在动作识别领域,基于骨骼点的3D姿态估计方法PoseC3D因其出色的性能表现而备受关注。作为MMAaction2框架中的重要算法组件,PoseC3D能够有效捕捉人体动作的时空特征。本文将详细介绍如何在MMAaction2中使用PoseC3D训练自定义数据集,特别是针对数据预处理和标注文件格式的关键技术要点。
PoseC3D数据格式解析
PoseC3D对输入数据有特定的格式要求,理解这些格式规范是成功训练模型的前提。最新版本的MMAaction2对PoseC3D的数据格式进行了优化调整,主要包含两个核心部分:
- split字典:定义了训练集和验证集的划分方式
- annotations列表:包含所有样本的详细标注信息
每个样本的标注数据应包含以下关键字段:
keypoint:骨骼关键点坐标keypoint_score:关键点置信度分数frame_dir:视频帧所在目录标识img_shape:图像尺寸original_shape:原始图像尺寸total_frames:总帧数label:动作类别标签
数据预处理实战
1. 原始数据收集与整理
首先需要将所有提取的骨骼点数据(通常以.pkl文件形式存储)集中存放在同一目录下。建议按照以下结构组织:
data/
└── posec3d/
├── custom_dataset_train.pkl
├── custom_dataset_val.pkl
└── raw_pkls/
├── video1.pkl
├── video2.pkl
└── ...
2. 数据分割与合并
使用Python脚本对原始数据进行分割和合并处理是关键的预处理步骤。以下是核心处理逻辑:
import os
import random
import pickle
# 1. 收集所有pkl文件路径
pkl_files = [f for f in os.listdir(pkl_folder) if f.endswith('.pkl')]
# 2. 随机打乱并分割
random.shuffle(pkl_files)
split_index = int(0.8 * len(pkl_files))
train_files = pkl_files[:split_index]
val_files = pkl_files[split_index:]
# 3. 合并处理函数
def merge_pickles(pickle_files, output_file):
split = {'xsub_train': [], 'xsub_val': []}
annotations = []
for pkl_file in pickle_files:
with open(pkl_file, 'rb') as f:
data = pickle.load(f)
annotations.append(data)
# 根据文件归属添加到不同split
if pkl_file in train_files:
split['xsub_train'].append(data['frame_dir'])
else:
split['xsub_val'].append(data['frame_dir'])
# 保存合并后的数据
merged_data = {'split': split, 'annotations': annotations}
with open(output_file, 'wb') as f:
pickle.dump(merged_data, f)
3. 配置文件调整
在MMAaction2的配置文件中,需要正确指定处理后的标注文件路径:
ann_file_train = 'data/posec3d/custom_dataset_train.pkl'
ann_file_val = 'data/posec3d/custom_dataset_val.pkl'
常见问题解决方案
1. 格式不匹配错误
当遇到类似"TypeError: list indices must be integers or slices, not str"的错误时,通常是因为标注文件格式不符合最新要求。解决方案是:
- 检查标注文件是否包含必需的'split'和'annotations'字段
- 确保每个样本的标注数据包含所有必需字段
- 使用上述合并脚本重新生成符合要求的标注文件
2. 数据划分策略
PoseC3D支持多种数据划分方式,最常见的是:
- xsub:基于受试者的交叉验证
- xview:基于视角的交叉验证
在实际应用中,可以根据具体需求选择合适的划分策略,并在split字典中进行相应配置。
最佳实践建议
- 数据均衡性:在分割数据集前,检查各类别样本分布,必要时进行过采样或欠采样
- 数据增强:利用MMAaction2提供的时间与空间增强策略提升模型鲁棒性
- 骨架可视化:训练前可视化部分样本骨架序列,确保数据质量
- 基准测试:先在NTU-RGB+D等标准数据集上测试流程,再迁移到自定义数据
结语
通过本文介绍的方法,开发者可以顺利地将自定义数据集适配到MMAaction2的PoseC3D框架中。正确理解数据格式要求并遵循标准处理流程,是成功训练自定义动作识别模型的关键。随着应用的深入,还可以进一步探索多模态融合、时序建模优化等进阶技术,以提升模型在实际场景中的表现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178