探索未来场景表示:ACORN —— 自适应坐标网络
2024-05-22 09:29:06作者:魏献源Searcher
在计算机图形学领域,我们正见证着一种新型的神经场景表示方法的诞生——ACORN(Adaptive Coordinate Networks),这个创新项目由斯坦福大学的研究团队于SIGGRAPH 2021上推出。本文将向您详细介绍ACORN,并揭示其潜在的应用价值和技术亮点。
项目介绍
ACORN是一个基于PyTorch的开源实现,它引入了自适应坐标网络的概念,旨在更快速、准确地拟合大规模图像和复杂的三维占用场。通过学习信号域的自适应分解,这种网络能够优化数据表示,从而提供更高的处理效率和精度。

项目技术分析
ACORN的核心是它的自适应坐标网络,这个网络可以学习到信号领域的动态分解,这使得网络在处理大型图像和精细3D模型时表现出色。它利用Gurobi优化器解决整数线性规划问题,进一步提高了拟合质量和速度。
应用场景
- 图像处理:ACORN能用于高分辨率图像的快速压缩和重建,例如可以高效地处理Pluto这样的百万像素图像。
- 3D建模:在3D建模领域,ACORN可以对复杂形状如东京城市景观、火星表面或者各种艺术作品进行精确的体积表示和重建。
项目特点
- 自适应性:ACORN网络能够自动学习信号的最佳分解方式,针对不同的输入数据调整其表示策略。
- 高效:相较于传统的神经网络,ACORN在处理大型数据集时展现出更快的训练速度和更高的准确性。
- 通用性:适用于广泛的图像和3D模型,适应性强。
- 易用性:提供完整的conda环境配置文件和实验脚本,易于安装和运行。
开始探索
要开始使用ACORN,请按照项目文档中的Quickstart指南设置环境,下载示例数据并启动训练。需要特别注意的是,为了使用Gurobi优化器,您需要注册并安装免费的学术版许可证。
conda env create -f environment.yml
conda activate acorn
cd inside_mesh
python setup.py build_ext --inplace
cd ../experiment_scripts
python train_img.py --config ./config_img/config_pluto_acorn_1k.ini
tensorboard --logdir=../logs --port=6006
对于学术研究者和开发人员来说,ACORN不仅是一个强大的工具,也是一个深入了解神经网络与几何表示之间关系的宝贵资源。所以,无论你是寻求创新图像处理方法还是对3D建模有兴趣,不妨尝试一下ACORN,开启你的探索之旅吧!
最后,使用ACORN进行研究或开发时,请记得引用相关论文:
@article{martel2021acorn,
title={ACORN: {Adaptive} coordinate networks for neural scene representation},
author={Julien N. P. Martel and David B. Lindell and Connor Z. Lin and Eric R. Chan and Marco Monteiro and Gordon Wetzstein},
journal={ACM Trans. Graph. (SIGGRAPH)},
volume={40},
number={4},
year={2021},
}
期待您的贡献和反馈,一起推动这项技术的发展!
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26