Elasticsearch-Python 客户端教程
2024-08-10 15:53:09作者:明树来
1. 项目目录结构及介绍
在 elastic/elasticsearch-py 仓库中,主要的目录结构如下:
.
├── CHANGES.txt # 版本更新记录
├── CONTRIBUTING.rst # 贡献指南
├── Dockerfile # Docker 镜像构建文件
├── docs # 文档源代码
│ ├── make.bat # Windows上的文档构建脚本
│ ├── Makefile # Linux/MacOS上的文档构建脚本
│ └── ... # 其他文档相关文件
├── elastic # 包含客户端源码
│ ├── __init__.py
│ ├── ...
├── examples # 示例代码
├── requirements-dev.txt # 开发依赖项
├── setup.py # Python包安装配置
└── tests # 测试代码
├── conftest.py
├── test_client.py
├── test_connection.py
└── ... # 更多测试文件
elastic 目录是主要的源代码存放处,包含了 elasticsearch 客户端的相关类和方法。docs 和 examples 分别存储了项目文档和示例代码,而 tests 目录则用于存放单元测试。
2. 项目启动文件介绍
由于 elasticsearch-py 是一个库而非独立的应用程序,它没有明确的 "启动" 文件。不过,你可以通过导入库并创建客户端实例来开始使用它。以下是如何初始化一个 Elasticsearch 客户端的基本步骤:
from elasticsearch import Elasticsearch
es = Elasticsearch([{'host': 'localhost', 'port': 9200}])
这段代码导入 Elasticsearch 类并创建了一个连接到本地运行的 Elasticsearch 实例的客户端对象。
3. 项目的配置文件介绍
elasticsearch-py 不直接支持配置文件,但允许在创建客户端时传递配置参数。这些参数可以通过字典形式的列表传递给 Elasticsearch 构造函数。例如:
es = Elasticsearch([
{'host': 'localhost', 'port': 9200},
{'host': 'backup.es.example.com', 'port': 9200, 'use_ssl': True, 'ca_certs': '/path/to/cert.pem'}
],
max_retries=5, retry_on_timeout=True,
)
在这个例子中,我们设置了两个节点(主节点和备份节点),还配置了最大重试次数以及超时时是否进行重试。对于更复杂的配置,可以考虑将这些设置保存在一个单独的配置文件中,然后在程序中读取它们:
import yaml
from elasticsearch import Elasticsearch
with open('config.yml') as f:
config = yaml.safe_load(f)
es = Elasticsearch(config['nodes'], **config['connection_params'])
config.yml 可以这样编写:
nodes:
- host: localhost
port: 9200
- host: backup.es.example.com
port: 9200
use_ssl: true
ca_certs: /path/to/cert.pem
connection_params:
max_retries: 5
retry_on_timeout: true
请注意,这种方法不是官方支持的,而是根据需求自定义实现的一种方式。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19