Marigold项目深度图推理优化与噪声问题分析
2025-06-29 19:42:20作者:邵娇湘
深度图推理性能优化
在Marigold项目中,当使用自定义数据集训练模型并进行推理时,可能会遇到推理速度缓慢的问题。经过技术分析,这主要与两个关键参数设置有关:去噪步骤数(denoise_steps)和集成大小(ensemble_size)。
参数优化建议:
- 将denoise_steps从默认的50减少到10-20之间
- 将ensemble_size从10降低到1-3之间
- 这两个参数的乘积直接影响总计算量,适当降低可显著提升推理速度
深度图噪声问题分析
在模型推理过程中出现的深度图噪声问题,可能由以下几个技术因素导致:
训练数据质量
- 使用8位相对深度图会损失精度,建议尽可能使用更高位深的深度数据
- 训练数据集的多样性不足可能导致模型泛化能力差
- 训练迭代次数不足也会影响最终模型质量
模型配置问题
- 检查是否使用了正确的预训练模型(checkpoint)
- 确保替换的unet文件夹与模型架构兼容
- 数据处理流程中可能存在不匹配的配置
深度图格式建议
对于深度图格式选择,技术专家建议:
- 避免使用8位深度图,这会显著降低深度估计精度
- 优先考虑16位或32位浮点格式的深度图
- 如果必须使用8位格式,需要特别注意训练数据的归一化处理
最佳实践方案
基于项目经验,推荐以下优化方案:
- 首先使用项目提供的标准checkpoint进行测试,确认基线性能
- 逐步调整denoise_steps和ensemble_size参数,找到速度与质量的平衡点
- 检查训练数据的分布和质量,确保覆盖各种场景
- 适当增加训练迭代次数,特别是对于自定义数据集
- 考虑使用更高精度的深度图格式进行训练
通过以上优化措施,可以显著改善Marigold项目在自定义数据集上的推理速度和深度图质量。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493