Jsoup项目中的CSS选择器性能优化实践
背景介绍
在HTML解析库Jsoup的使用过程中,开发者发现某些CSS选择器查询存在明显的性能问题。特别是当使用类似#id .class
这样的选择器时,查询速度在不同版本间存在显著差异。本文将从技术角度深入分析这一性能问题的根源,并探讨Jsoup团队如何通过优化选择器执行计划来解决这一问题。
问题发现
开发者在使用Jsoup解析Google搜索结果页面时,发现执行document.select("#res .p7kDMc")
这样的查询语句时,1.18版本比1.13版本慢了约4倍。经过性能分析工具(JProfiler)的测试,200次查询在1.13版本耗时约10秒,而在1.18版本则需要47秒。
深入分析
Jsoup维护者通过基准测试(JMH)对不同版本进行了系统性的性能对比,发现性能下降主要发生在1.16.1到1.16.2版本之间。这一版本引入了选择器评估器的重新排序功能,目的是通过成本计算优化查询执行顺序。
进一步分析发现,对于#id .class
这样的选择器,执行计划存在优化空间。原始的执行计划会先查找ID元素,然后再查找其下的类元素。然而,这种执行顺序在某些场景下并不高效。
技术解决方案
Jsoup团队通过调整选择器评估器的成本计算模型解决了这一问题。关键改进点包括:
-
重新评估祖先选择器成本:将祖先选择器(空格操作符)的成本从4提高到16,使其更准确地反映实际扫描树结构的开销。
-
优化执行计划:调整后的执行计划会先查找类元素,然后再检查其祖先是否匹配指定的ID,这种顺序在大多数情况下更为高效。
-
重命名澄清语义:将"Parent"评估器更名为"Ancestor",更准确地表达其功能特性。
性能提升效果
经过优化后,基准测试显示性能有了显著提升:
- 优化前:约500 ops/s
- 优化后:约2379 ops/s
性能提升接近5倍,甚至超过了最初1.13版本的性能水平。更重要的是,性能表现变得更加稳定,消除了之前版本中出现的巨大波动。
技术启示
这一优化案例为我们提供了几个重要的技术启示:
-
查询计划的重要性:即使是简单的CSS选择器,不同的执行顺序也会产生巨大的性能差异。
-
成本模型的准确性:合理的成本评估是优化查询性能的基础,需要根据实际场景不断调整。
-
持续性能监控:随着功能迭代,需要建立完善的性能基准测试体系,及时发现并解决性能回退问题。
结论
Jsoup通过精细调整CSS选择器的执行计划,成功解决了特定场景下的性能退化问题。这一案例展示了开源项目中性能优化的重要性,也体现了Jsoup团队对性能问题的快速响应和专业解决能力。对于开发者而言,了解这些底层优化原理有助于编写更高效的HTML解析代码。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0313- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









