机器学习艺术入门:使用ml5.js构建DIY神经网络的数据处理教程
2025-06-30 18:12:00作者:戚魁泉Nursing
前言
在机器学习项目中,数据处理是构建有效模型的关键第一步。本文将以著名的泰坦尼克号乘客生存数据集为例,详细介绍如何为ml5.js DIY神经网络准备数据。我们将从数据获取开始,逐步讲解数据探索、清洗和格式化的全过程。
数据获取阶段
寻找合适的数据集
寻找适合机器学习项目的数据集需要考虑多个因素。优质的数据集通常具备以下特征:
- 清晰的来源和收集目的
- 完整的数据字典(解释各字段含义)
- 合理的样本量和特征数量
- 适度的数据质量(缺失值比例可控)
对于初学者,结构化程度较高的数据集(如泰坦尼克号数据集)是理想的起点。这类数据集通常已经过初步整理,但仍保留了一些真实数据中常见的"瑕疵",非常适合练习数据清洗技巧。
数据探索与分析
初步数据检查
在Google Sheets中打开原始数据后,我们首先进行以下基础检查:
-
数据结构检查:
- 行数:1,310条乘客记录
- 列数:14个特征变量
-
变量类型识别:
- 数值型:年龄(age)、票价(fare)等
- 类别型:乘客等级(pclass)、性别(sex)等
- 文本型:姓名(name)、船票编号(ticket)等
-
数据质量问题:
- 年龄字段有263个缺失值(标记为"?")
- 票价字段有1个缺失值
- 其他字段完整性较好
特征选择策略
基于模型简洁性和预测效果的平衡,我们选择保留以下核心特征:
- 生存状态(survived):目标变量(预测是否幸存)
- 乘客等级(pclass):反映社会经济地位
- 性别(sex):已知对生存率有显著影响
- 年龄(age):生命阶段可能影响生存机会
- 票价(fare):间接反映乘客身份
数据清洗实战
数值型数据处理
-
票价四舍五入:
- 使用Google Sheets的格式化功能将票价取整
- 操作路径:格式 > 数字 > 自定义数字格式
-
缺失年龄处理:
- 采用"均值±标准差"范围内的随机数填充
- 公式示例:
=IF(E2="?", RANDBETWEEN((AVERAGE(E:E)-STDEV(E:E)),(AVERAGE(E:E)+STDEV(E:E))), IF(E2=E2, E2)) - 这种方法既保持了数据分布特性,又增加了合理波动性
类别型数据转换
ml5.js神经网络对类别型数据的特殊要求:
- 需要将数字编码转换为直观的字符串
- 例如将乘客等级1/2/3转换为"first"/"second"/"third"
转换公式示例:
=IF(A2=1,"first", IF(A2=2,"second", IF(A2=3,"third")))
异常数据处理
对于票价字段的唯一缺失值,简单的处理方式是:
- 直接删除该行记录
- 在样本量足够大的情况下,这种处理对模型影响有限
数据导出准备
最终数据整理步骤
- 创建新工作表"titanic_clean"
- 使用"仅粘贴值"方式复制清洗后的数据
- 移除原始的特征列(保留转换后的版本)
- 再次检查数值格式一致性
导出为CSV
关键操作:
- 文件 > 下载 > 逗号分隔值(.csv)
- 为文件命名时包含"clean"标识(如titanic_clean.csv)
数据科学最佳实践
-
版本控制:
- 始终保持原始数据的独立副本
- 对每个处理步骤创建中间版本
-
处理记录:
- 记录所有数据转换决策(如缺失值处理方式)
- 这对于结果复现和问题排查至关重要
-
质量检查:
- 随机抽样检查转换结果
- 验证统计特性是否保持合理
结语
通过本教程,我们完成了从原始数据到模型就绪数据的完整处理流程。虽然泰坦尼克号数据集相对规整,但其中涉及的缺失值处理、类型转换等技术同样适用于更复杂的数据场景。记住,良好的数据质量是构建有效机器学习模型的基础,投入在数据准备阶段的时间将在模型性能上获得回报。
现在,您已经准备好使用这份清洗后的数据在ml5.js中训练您的第一个神经网络模型了!
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
296
2.64 K
Ascend Extension for PyTorch
Python
128
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
607
190
React Native鸿蒙化仓库
JavaScript
228
307
暂无简介
Dart
589
127
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
611
仓颉编译器源码及 cjdb 调试工具。
C++
122
482
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
178
62
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
454