Ordered-Neurons 项目使用教程
2024-09-25 06:32:33作者:董斯意
1. 项目的目录结构及介绍
Ordered-Neurons/
├── data/
│ └── penn/
├── data_ptb.py
├── embed_regularize.py
├── locked_dropout.py
├── main.py
├── model.py
├── ON_LSTM.py
├── parse_comparison.py
├── README.md
├── requirements.txt
├── splitcross.py
├── test_phrase_grammar.py
├── utils.py
└── weight_drop.py
目录结构介绍
- data/: 存放数据集的目录,通常包含训练和测试数据。
- data_ptb.py: 处理Penn Treebank数据集的脚本。
- embed_regularize.py: 嵌入正则化的实现。
- locked_dropout.py: 锁定dropout的实现。
- main.py: 项目的主启动文件,用于训练和测试模型。
- model.py: 定义模型的核心代码。
- ON_LSTM.py: 实现Ordered Neurons LSTM模型的核心代码。
- parse_comparison.py: 用于解析和比较的脚本。
- README.md: 项目的介绍和使用说明。
- requirements.txt: 项目依赖的Python库列表。
- splitcross.py: 用于分割和交叉的脚本。
- test_phrase_grammar.py: 用于测试短语语法的脚本。
- utils.py: 项目中使用的各种工具函数。
- weight_drop.py: 权重dropout的实现。
2. 项目的启动文件介绍
main.py
main.py
是项目的启动文件,主要用于训练和测试语言模型。以下是一些关键参数和用法:
python main.py --batch_size 20 --dropout 0.45 --dropouth 0.3 --dropouti 0.5 --wdrop 0.45 --chunk_size 10 --seed 141 --epoch 1000 --data /path/to/your/data
- --batch_size: 批处理大小。
- --dropout: 总体dropout率。
- --dropouth: 隐藏层dropout率。
- --dropouti: 输入dropout率。
- --wdrop: 权重dropout率。
- --chunk_size: 块大小。
- --seed: 随机种子。
- --epoch: 训练轮数。
- --data: 数据集路径。
3. 项目的配置文件介绍
requirements.txt
requirements.txt
文件列出了项目运行所需的Python库及其版本。可以使用以下命令安装所有依赖:
pip install -r requirements.txt
关键依赖
- Python 3.6: 项目使用的Python版本。
- NLTK: 自然语言处理工具包。
- PyTorch 0.4: 深度学习框架。
其他配置
项目中没有显式的配置文件,但可以通过命令行参数在 main.py
中进行配置。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5