深入解析Elastic OTel Profiling Agent对JDK23的支持挑战与解决方案
背景概述
Java性能分析工具Elastic OTel Profiling Agent在支持即将发布的JDK23时遇到了关键性挑战。当尝试分析JDK23进程时,系统会抛出"JVM symbol 'CompiledMethod.Sizeof' not found"错误,这表明工具需要针对JDK23的内部结构变化进行适配。
核心问题分析
通过深入调查JDK23的代码变更,我们发现三个关键性修改直接影响性能分析工具的工作机制:
-
类结构合并:JDK23将原有的
CompiledMethod类完全合并到nmethod类中,这直接导致工具无法找到原有的符号信息。这种合并是JVM内部优化的结果,旨在简化代码结构。 -
偏移量字段移除:
nmethod._dependencies_offset字段被完全移除,这个字段原本被分析工具用来追踪方法依赖关系。 -
数据类型变更:多个关键字段的数据类型发生了变化:
CodeBlob::frame_comp从int变为int16_tNmethod::_metadata_offset从int变为uint16_t
这些变更反映了JVM团队对内存使用效率的优化,但也带来了兼容性挑战。
技术解决方案
针对这些变更,解决方案需要从以下几个层面进行:
-
符号查找机制重构:需要更新符号查找逻辑,将原本针对
CompiledMethod的查找转向新的nmethod结构。 -
偏移量计算调整:由于关键偏移量字段的移除,需要开发新的方法来计算和追踪方法依赖关系。
-
数据类型处理适配:需要确保工具能够正确处理新的数据类型,特别是在处理内存读取和解析时。
实现进展与挑战
目前已有初步实现方案,能够基本支持JDK23的分析功能,但仍存在一些待解决的问题:
-
部分帧无法符号化:在测试过程中发现少量堆栈帧仍无法正确符号化,这表明某些边缘情况尚未完全覆盖。
-
性能优化需求:新的实现方案需要进一步优化以确保不会引入明显的性能开销。
-
全面测试覆盖:需要针对JDK23的各种使用场景进行更全面的测试验证。
未来工作方向
为了完善对JDK23的支持,后续工作将集中在以下几个方面:
-
深入分析未符号化帧:通过详细日志和调试找出导致部分帧无法符号化的根本原因。
-
兼容性测试矩阵:建立完整的测试矩阵,覆盖JDK23的各种配置和使用场景。
-
性能基准测试:对新实现进行系统性的性能评估,确保不会对目标应用产生显著影响。
-
文档更新:完善相关文档,帮助用户了解JDK23支持的特性和限制。
总结
Java虚拟机内部的持续优化为性能分析工具带来了新的挑战。Elastic OTel Profiling Agent团队正在积极应对JDK23带来的变化,通过深入理解JVM内部结构变更,逐步完善工具的支持能力。这一过程不仅涉及技术实现的调整,更需要建立对JVM演进方向的深刻理解,以确保工具能够持续为开发者提供准确的性能分析数据。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00