LoRAEdit项目支持的模型类型及训练指南
2025-06-19 03:08:45作者:贡沫苏Truman
LoRAEdit是一个专注于高效微调各类生成模型的工具,特别适合在有限硬件资源下进行模型定制化训练。本文将详细介绍该项目支持的各类模型及其训练配置要点,帮助开发者快速上手。
模型支持概览
LoRAEdit支持多种主流生成模型,包括图像生成和视频生成两大类。下表展示了各模型对LoRA微调、全参数微调(fp8/量化)的支持情况:
| 模型名称 | LoRA支持 | 全参数微调 | fp8/量化支持 |
|---|---|---|---|
| SDXL | ✅ | ✅ | ❌ |
| Flux | ✅ | ✅ | ✅ |
| LTX-Video | ✅ | ❌ | ❌ |
| HunyuanVideo | ✅ | ❌ | ✅ |
| Cosmos | ✅ | ❌ | ❌ |
| Lumina Image 2.0 | ✅ | ✅ | ❌ |
| Wan2.1 | ✅ | ❌ | ✅ |
| Chroma | ✅ | ✅ | ✅ |
| HiDream | ✅ | ❌ | ✅ |
主要模型详解
SDXL模型
SDXL是目前最流行的开源图像生成模型之一。LoRAEdit对其支持特点如下:
- 配置要点:需要指定checkpoint路径和数据类型(bfloat16)
- 训练特点:支持文本编码器训练,不缓存文本嵌入
- 硬件需求:全参数微调需要48GB显存(可使用2块24GB显卡并行)
- 输出格式:LoRA采用Kohya格式,全参数微调采用原生SDXL格式
[model]
type = 'sdxl'
checkpoint_path = '/path/to/sd_xl_base_1.0.safetensors'
dtype = 'bfloat16'
unet_lr = 4e-5
text_encoder_1_lr = 2e-5
text_encoder_2_lr = 2e-5
Flux模型
Flux是Black Forest Labs开发的高效生成模型:
- 配置灵活性:可从Diffusers目录加载,也可单独覆盖transformer权重
- 训练优化:支持fp8训练transformer,节省显存
- 特殊参数:
flux_shift参数控制分辨率相关的时间步偏移
[model]
type = 'flux'
diffusers_path = '/path/to/FLUX.1-dev'
transformer_dtype = 'float8'
flux_shift = true
视频生成模型
LTX-Video
- 混合加载:同时需要Diffusers目录和单文件checkpoint
- 训练限制:仅支持文本到图像(t2i)和文本到视频(t2v)训练
- 时间步采样:推荐使用logit_normal方法
HunyuanVideo
腾讯开发的强大视频生成模型:
- 加载方式:支持官方ckpt路径或ComfyUI单文件组合
- fp8支持:transformer可启用fp8训练
- 输出格式:Diffusers风格,兼容ComfyUI
[model]
type = 'hunyuan-video'
transformer_path = '/path/to/hunyuan_video.safetensors'
vae_path = '/path/to/vae.safetensors'
transformer_dtype = 'float8'
Wan2.1
- 变体支持:兼容t2v和i2v两种变体
- i2v训练:必须使用纯视频数据集
- 硬件要求:14B模型的i2v训练显存需求高
其他特色模型
Lumina Image 2.0
- 分辨率建议:推荐1024x1024训练
- 全参数微调:单24GB显卡可行,需使用特殊优化器
- 训练技巧:建议添加caption前缀
Chroma
- 架构基础:基于Flux Schnell修改
- 训练优化:transformer支持fp8
- 配置要点:需要同时指定Flux的Diffusers路径和Chroma单文件
HiDream
- 分辨率要求:最低1024,低分辨率效果差
- 文本编码:Llama3编码器需保持加载,支持4bit量化
- 显存需求:基础需要48GB,通过量化可降至24GB
训练建议与技巧
- 显存优化:对于大模型,优先尝试fp8/量化选项
- 学习率设置:不同组件(如UNet和文本编码器)可设置不同学习率
- 视频训练:注意视频clip模式设置,i2v需要特殊处理
- 分辨率选择:某些模型有最低分辨率要求,低于会影响质量
- 优化器选择:全参数微调时,考虑使用内存优化版优化器
通过合理配置,LoRAEdit可以在有限硬件资源下高效微调各类先进生成模型,是生成式AI开发者的有力工具。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443