Sentence Transformers 模型配置中嵌入相似度/距离度量的标准化存储
在自然语言处理领域,Sentence Transformers 作为处理句子嵌入的重要工具,其模型配置的标准化一直是一个值得关注的技术话题。本文将深入探讨如何在 Sentence Transformers 模型中标准化存储嵌入相似度和距离度量方法。
背景与现状
当前 Sentence Transformers 项目中存在一个技术痛点:不同的模型使用不同的嵌入相似度或距离度量方法来比较它们的嵌入向量。常见的度量方法包括点积(dot product)和余弦相似度(cosine similarity)等。然而,这些度量方法的定义分散在项目的多个文件中,缺乏统一的标准化管理。
技术方案设计
为了解决这一问题,开发团队提出了在模型配置文件(config_sentence_transformers.json)中标准化存储这些度量方法的方案。具体实现方式是在配置文件中添加"score_function"字段,其值可以是"cosine_similarity"或"dot_product"等字符串标识。
这种设计具有以下技术优势:
- 统一管理:将所有相似度/距离度量方法集中在一个配置文件中
- 自动加载:模型加载时自动识别并使用配置的度量方法
- 向后兼容:默认使用余弦相似度,确保现有模型的兼容性
实现细节与考量
在技术实现过程中,开发团队面临几个关键决策点:
-
度量方法定义方式:团队决定采用枚举(Enum)的方式统一管理所有度量方法,替代原先分散在各处的定义方式。这不仅减少了代码冗余,也提高了可维护性。
-
相似度与距离的关系处理:对于曼哈顿距离和欧氏距离等度量,团队深入探讨了相似度与距离的数学关系。在自然语言处理领域,相似度通常被定义为距离的负值或通过转换函数(如1/(1+dist))来表示。经过讨论,团队最终采用了负距离的方案,这与学术文献中的常见做法一致。
-
评估器适配:对于EmbeddingSimilarityEvaluator类,团队确保其能够自动识别并使用模型配置中指定的度量方法,无需用户显式指定,提高了用户体验。
技术影响与展望
这一改进已被纳入Sentence Transformers的v3.0版本中。标准化存储相似度/距离度量方法带来了以下长期效益:
- 模型可解释性增强:通过配置文件明确记录模型使用的度量方法
- 评估一致性:确保训练和评估阶段使用相同的度量标准
- 扩展性提升:为未来添加新的度量方法提供了标准化的扩展途径
对于自然语言处理工程师和研究人员而言,这一改进使得模型配置更加透明,实验结果更加可重现,是Sentence Transformers项目向更加标准化、规范化方向发展的重要一步。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









