Drizzle ORM 查询优化:实现高效的分页计数功能
2025-05-06 01:51:37作者:宗隆裙
在数据库操作中,分页查询并获取总记录数是一个常见需求。Drizzle ORM 作为一款现代化的 TypeScript ORM 工具,其查询 API 设计简洁高效,但在处理分页计数场景时仍存在优化空间。
传统实现方式的痛点
开发者在使用 Drizzle ORM 进行分页查询时,通常需要同时执行两个操作:
- 获取当前页的数据列表
- 计算符合条件的总记录数
传统实现方式需要编写重复的查询条件,代码冗余且容易出错。例如:
const [data, count] = await Promise.all([
db.query.users.findMany({
where: { active: true },
limit: 10,
offset: 0
}),
db.select({ count: count() })
.from(users)
.where(eq(users.active, true))
]);
这种方式虽然功能完整,但在实际项目中会带来以下问题:
- 查询条件需要重复编写
- 代码可读性降低
- 维护成本增加
解决方案探索
Drizzle ORM 团队已经意识到了这一需求,并提供了 db.$count
方法作为基础解决方案。这个方法专门用于简化行数统计操作,可以与关系查询构建器(RQB)API配合使用。
db.$count
的基本用法如下:
const total = await db.$count()
.from(users)
.where(eq(users.active, true));
虽然这解决了简单的计数问题,但对于完整的分页计数场景,开发者仍需要结合 findMany
使用。更优雅的解决方案是期待 Drizzle ORM 提供原生的 findManyAndCount
方法。
最佳实践建议
在当前版本下,我们可以通过以下方式优化分页计数实现:
- 封装工具函数:创建一个通用的分页查询工具函数,统一处理查询条件和结果组装
async function paginateWithCount(
queryBuilder: any,
options: { where?: any; limit: number; offset: number }
) {
const [data, total] = await Promise.all([
queryBuilder.findMany(options),
db.$count()
.from(queryBuilder.meta.table)
.where(options.where)
]);
return { data, total };
}
- 类型安全扩展:通过 TypeScript 类型扩展增强查询体验
declare module 'drizzle-orm' {
interface DrizzleQueryBuilder {
findManyAndCount: (options: FindManyOptions) => Promise<[any[], number]>;
}
}
- 性能优化:对于大数据量表,考虑使用近似计数或缓存策略
未来展望
随着 Drizzle ORM 的持续发展,我们期待官方能够提供更多便捷的查询方法,如:
- 原生的
findManyAndCount
方法 - 简化主键查询的
findByPK
方法 - 存在性检查的
exists
方法
这些改进将进一步提升开发体验,减少样板代码,使 Drizzle ORM 在各种应用场景中更加高效易用。
对于需要频繁处理分页计数的项目,建议关注 Drizzle ORM 的更新日志,及时获取最新的 API 改进信息,同时合理封装现有功能以提升开发效率。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp课程中屏幕放大器知识点优化分析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133