Pandas分类数据类型(Categorical)完全指南
2025-05-31 15:29:27作者:丁柯新Fawn
什么是分类数据?
分类数据(Categorical Data)是pandas中一种特殊的数据类型,用于表示统计学中的分类变量。这类变量具有有限且通常固定的可能值(称为类别或水平)。典型例子包括:
- 性别(男/女)
 - 血型(A/B/AB/O)
 - 教育程度(小学/中学/大学)
 - 产品评级(优/良/中/差)
 
与普通字符串或数值类型不同,分类数据具有以下特点:
- 类别数量固定且有限
 - 可能具有内在顺序(如评级从优到差)
 - 不支持数值运算(加减乘除等)
 - 内存效率更高(特别当类别远少于数据量时)
 
为什么使用分类数据?
使用分类数据类型主要有三大优势:
- 内存效率:当字符串列只有少量不同值时,转换为分类类型可显著减少内存使用
 - 逻辑排序:可以定义与字母顺序不同的逻辑排序(如"优" > "良" > "中" > "差")
 - 语义明确:向其他库明确指示该列应作为分类变量处理,便于使用适当的统计方法或图表类型
 
创建分类数据
创建分类Series
有几种常见方式可以创建分类Series:
# 方法1:构造时指定dtype
s1 = pd.Series(["a", "b", "c", "a"], dtype="category")
# 方法2:转换现有Series
s2 = pd.Series(["a", "b", "c", "a"])
s2_cat = s2.astype('category')
# 方法3:使用pd.cut分箱
df = pd.DataFrame({'value': np.random.randint(0, 100, 20)})
df['group'] = pd.cut(df.value, bins=range(0, 105, 10), right=False)
# 方法4:直接使用Categorical对象
raw_cat = pd.Categorical(["a", "b", "c", "a"], categories=["b", "c", "d"])
s3 = pd.Series(raw_cat)
创建分类DataFrame
可以批量将DataFrame中的列转换为分类类型:
# 构造时转换
df1 = pd.DataFrame({'A': list('abca'), 'B': list('bccd')}, dtype="category")
# 批量转换现有DataFrame
df2 = pd.DataFrame({'A': list('abca'), 'B': list('bccd')})
df2_cat = df2.astype('category')
控制分类行为
通过CategoricalDtype可以更精细地控制分类属性:
from pandas.api.types import CategoricalDtype
# 定义分类类型
cat_type = CategoricalDtype(categories=["b", "c", "d"], ordered=True)
# 应用分类类型
s = pd.Series(["a", "b", "c", "a"])
s_cat = s.astype(cat_type)
分类数据操作
访问和修改类别
s = pd.Series(["a", "b", "c", "a"], dtype="category")
# 查看类别
print(s.cat.categories)  # Index(['a', 'b', 'c'], dtype='object')
# 查看是否有序
print(s.cat.ordered)  # False
# 重命名类别
s.cat.categories = ["Group A", "Group B", "Group C"]
# 添加新类别
s = s.cat.add_categories(["Group D"])
# 删除类别(被删除的值变为NaN)
s = s.cat.remove_categories(["Group A"])
# 设置完整类别列表
s = s.cat.set_categories(["Group B", "Group C", "Group D", "Group E"])
排序与顺序
分类数据的排序行为由其类别顺序决定,而非值的字母或数字顺序:
# 无序分类无法使用min/max
s = pd.Series(["a", "b", "c", "a"], dtype="category")
try:
    s.min()  # 引发TypeError
except TypeError as e:
    print(e)
# 有序分类
s_ordered = pd.Series(["a", "b", "c", "a"]).astype(
    CategoricalDtype(categories=["c", "b", "a"], ordered=True)
)
print(s_ordered.min())  # 'c'(因为'c'在类别中排第一位)
比较操作
分类数据支持有限的比较操作:
- 与长度相同的列表类对象进行相等性比较(==, !=)
 - 两个具有相同类别和顺序的有序分类数据之间的所有比较
 - 分类数据与标量之间的比较
 
cat1 = pd.Series([1, 2, 3]).astype(
    CategoricalDtype([3, 2, 1], ordered=True)
)
cat2 = pd.Series([2, 2, 2]).astype(
    CategoricalDtype([3, 2, 1], ordered=True)
)
# 有效比较
print(cat1 > cat2)  # [False, False, True]
# 无效比较(会引发TypeError)
try:
    cat1 > [2, 2, 2]
except TypeError as e:
    print(e)
最佳实践
- 内存优化:当字符串列的唯一值少于总值的50%时,考虑转换为分类类型
 - 明确顺序:如果业务逻辑有明确排序,务必设置ordered=True
 - 类别管理:创建后尽早固定类别列表,避免后续操作引入不一致
 - 谨慎比较:注意分类数据比较的限制,避免意外错误
 
分类数据类型是pandas中一个强大但常被忽视的特性,合理使用可以提升代码的效率和可读性,特别是在处理具有固定选项的业务数据时。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445