YOLOv10模型输出格式解析与使用指南
2025-05-22 13:39:42作者:韦蓉瑛
模型输出结构解析
YOLOv10的ONNX模型输出格式为1×300×6,这与之前版本的YOLO模型(如YOLOv8的8400输出)有所不同。这个输出结构可以分解为三个维度:
- 批量维度:固定为1,表示单批次推理
- 预测框数量:300,代表模型单次推理最多可检测的目标数量上限
- 预测信息维度:6,包含目标检测的全部关键信息
输出数据详细说明
每个预测框的6维信息按顺序包含以下内容:
- 边界框坐标:前4个值(x1, y1, x2, y2)表示边界框的左上角和右下角坐标,采用的是绝对坐标格式
- 分类置信度:第5个值是该预测框对应类别的置信度分数
- 类别索引:第6个值是预测的类别标签索引
与YOLOv8的差异对比
YOLOv8的输出格式通常为1×8400×85(以COCO数据集为例),主要区别在于:
- 预测框数量:YOLOv10固定输出300个预测框,而YOLOv8输出8400个候选框后通过NMS筛选
- 信息组织方式:YOLOv10将类别置信度和类别索引直接输出,而YOLOv8输出所有类别的概率分布
- 后处理简化:YOLOv10的输出结构更紧凑,减少了后处理的计算量
实际应用注意事项
- 最大检测数量:300的上限可以通过修改配置文件中的max_det参数进行调整
- 坐标格式:务必注意YOLOv10使用的是xyxy格式而非xywh格式
- 置信度阈值:实际应用中需要设置适当的置信度阈值来过滤低质量预测
- 框架转换:转换为其他推理框架(如MNN)时需注意保持输出结构的正确性
模型优化建议
对于需要与其他YOLO版本兼容的场景,可以考虑:
- 修改模型输出层结构以匹配目标格式
- 开发适配层来处理不同版本间的输出差异
- 在模型转换时明确指定输出格式要求
理解YOLOv10的输出格式对于正确使用该模型至关重要,特别是在嵌入式部署和多模型集成等场景下。开发者应当根据实际应用需求,合理处理模型输出并进行必要的后处理优化。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218